二元一次方程应用题详解.doc

二元一次方程应用题详解.doc

ID:58991603

大小:43.50 KB

页数:7页

时间:2020-09-16

二元一次方程应用题详解.doc_第1页
二元一次方程应用题详解.doc_第2页
二元一次方程应用题详解.doc_第3页
二元一次方程应用题详解.doc_第4页
二元一次方程应用题详解.doc_第5页
资源描述:

《二元一次方程应用题详解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一元二次方程应用的话,也就这几种类型了。。。方法掌握了,怎么变都不怕。一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解 设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答 这两个月的平均增长率是10%.说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的

2、次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×

3、(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答 需要进货100件,每件商品应定价25元.说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解 设第一次存款

4、时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答 第一次存款的年利率约是2.04%.说明 这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门

5、的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答 渠道的上口宽2.5m,渠深1m.说明 求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5 读诗词解题:(通过列方程式,算出周瑜去世

6、时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解 设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答 周瑜去世的年龄为36岁.说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6 象棋比赛中

7、,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解 设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位

8、数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答 参加比赛的选手共有45人.说明 类似于本题中的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。