欢迎来到天天文库
浏览记录
ID:58984085
大小:768.50 KB
页数:31页
时间:2020-09-27
《高中数学 153定积分的概念课件 新人教A版选修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.5.3定积分的概念学习目标:1、理解定积分的概念;2、理解定积分的几何意义和性质!观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边
2、梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯
3、形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:当分割点无限增多时,小矩形的面积和=曲边梯形的面积求由连续曲线y=f(x)对应的曲边梯形面积的方法(2)取近似求和:任取xi[xi-1,xi],第i个小曲边梯形的面积用高为f(xi)而宽为Dx的小矩形面积f(xi)Dx近似之。(3)取极限:,所求曲边梯形的面积S为取n个小矩形面积的和作为曲边梯形面积S的近似值:xiy=f(x)xyObaxi+1xi(1)分割:在区间[0,1]上等间隔地插入n-1个点,将它等分成n个小区间:每个小区
4、间宽度△x分析:一般地,如果函数f(x)在区间[a,b]上连续,用分点a=x0<x1<x2<…<xi<…<xn=b将区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi](i=1,2,…,n)上任取一点作和式,那么当n→∞时,Sn的极限是否一定存在?一定存在在数学上,把叫做函数f(x)在区间[a,b]上的定积分,记作,即定积分的定义:定积分的定义:定积分的相关名称:———叫做积分号,f(x)——叫做被积函数,f(x)dx—叫做被积表达式,x———叫做积分变量,a———叫做积分下限,b———叫做积分上限,[a,b]—叫做积分
5、区间。被积函数被积表达式积分变量积分下限积分上限按定积分的定义,有(1)由连续曲线y=f(x)(f(x)0),直线x=a、x=b及x轴所围成的曲边梯形的面积为(2)设物体运动的速度v=v(t),则此物体在时间区间[a,b]内运动的距离s为定积分的定义:1xyOf(x)=x2Ovt12说明:(1)定积分是一个数值,它只与被积函数及积分区间有关,而与积分变量的记法无关,即òbaf(x)dx=òbaf(x)dx-(3)(2)定积分的几何意义:Oxyabyf(x)x=a、x=b与x轴所围成的曲边梯形的面积。当f(x)0时,由yf(x
6、)、xa、xb与x轴所围成的曲边梯形位于x轴的下方,xyO=-.abyf(x)y-f(x)=-S上述曲边梯形面积的负值。定积分的几何意义:=-Sabyf(x)Oxy探究:根据定积分的几何意义,如何用定积分表示图中阴影部分的面积?abyf(x)Oxy三:定积分的基本性质性质1.性质2.三:定积分的基本性质定积分关于积分区间具有可加性性质3.Oxyabyf(x)C性质3不论a,b,c的相对位置如何都有aby=f(x)cOxy(4)(6)(5)例1:利用定积分的定义,计算的值.
此文档下载收益归作者所有