欢迎来到天天文库
浏览记录
ID:58971536
大小:273.50 KB
页数:5页
时间:2020-09-16
《公开课教案++教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、公开课教案上课班级:九年级(18)班学科:数学第15周章节与课题3.1车轮为什么做成圆形课时安排第1课时主备人胡崇喜辅助备课人九年级数学组授课人胡崇喜使用日期11.26本课时学习目标或学习任务1.经历形成圆的概念的过程,经历探索点与圆位置关系的过程;2.理解圆的概念,理解点与圆的位置关系.本课时重点难点或学习建议教学重点:圆及其有关概念,点与圆的位置关系.教学难点:用集合的观念描述圆.本课时教学资源的使用多媒体(课件)教学过程学习要求或学法指导教师二次备课栏(课件展示)1创设现实情境,引入新课前面我们已经学习过两种常见的几何图形,三角形、四边形.大家回忆一下我们是通过一些什么方
2、法研究了它们的性质?折叠、平移、旋转、推理证明等方法.今天我们继续运用这些方法来学习和研究小学已接触过的另一种常见的几何图形——圆.和三角形、四边形一样,圆的性质与应用同样需要通过折叠、平移、旋转、推理证明等方法去学习和探究.下面我们来学习第一节:车轮为什么做成圆形.Ⅱ.新课日常生活中同学们经常见到的汽车、摩托车、自行车等一些交通运输工具的车轮是什么形状的?(圆形)请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?大家讨论如下图:圆形车轮行进时,较平稳;方形车轮运转不方便,颠簸较大,行走不平稳……通过我们平常乘坐汽车,或骑自行车感受到,圆形的车轮只要路面平整
3、,车子就不会上下颠簸,人坐在车上就感到平稳、舒服.假如车轮是方形的,那么车子在行进中,就会对人产生一种上下颠簸,坐着不舒服的感觉.下面我们一起来探讨一下,是什么原因导致车轮要做成圆形,不能做成方形.看P90图,A、B表示车轮边缘上的两点,点O表示车轮的轴心,A、O之间的距离与B、O之间的距离有什么关系?用什么方法可以判断,大家动手做一做.以前画过圆,画一个圆很简单.将圆规的一个脚固定,另一个带有铅笔头的脚转一圈,一个圆就画出来了.固定的那一点称为圆心.所画得的圆圈叫圆周.从画圆的过程中可以看到,圆规两个脚之间的长度始终保持不变,也就是说圆心到圆周上任意一点的距离都相等.这是圆的
4、一个重要而又最基本的性质.人们就是用圆的这种性质来制造车轮的,车轴总是安装在车轮的圆心位置上,这样,车轴到车轮边缘的距离处处相等.也就是说,车子在行进中,车轴离路面的距离总是一样的.车子在平路上行走较平稳,假如是方形的,车轴到路面的距离时大时小,车子就会产生颠簸.下面我们再看一个游戏队形.一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每个人都公平吗?你认为他们应当排成什么样的队形?大家讨论,说出各自的想法.就这个问题,如果单纯从队形来考虑,排成圆形或圆弧形比较公平.因为每个同学离要投的目标一样远近.这样我们就得到了圆的定义:平面上到定点的距离等于定长的所有点组成的图形
5、叫做圆(circle).其中,定点称为圆心(Centreofacircle),定长称为半径(radius)的长(通常也称为半径).以点O为圆心的圆记作⊙O,读作“圆O”.注意:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定.只有圆心和半径都固定,圆才被唯一确定.巩固练习:课本P92随堂练习!1.体育教师想利用一根3m长的绳子在操场上画一个半径为3m的圆,你能帮他想想办法吗?答:将绳子的一端A固定,然后拉紧绳子的另一端B,并
6、绕A在地上转一圈,B所经过的路径就是所希望的圆.接下来我们研究点和圆的位置关系.看书P90想一想,图3-3.由图可以看出A、C在⊙O内,点B在⊙O上,点D、E在⊙O外,如果我们把这个靶看成一个以O为圆心,以r为半径的圆,飞镖落的位置看成点,那么我们可以发现点和圆的位置有三种情况:点在圆内、点在圆上、点在圆外.若设⊙O的半径为r,点P到圆心O的距离为d.当点P与圆心的距离由小于半径变到等于半径再变到大于半径时,点和圆的位置关系就由圆内变到圆上再变到圆外.这说明由点和圆的位置关系可以得到d与r之间的关系,反过来,由d与r的数量关系也可以判定点和圆的位置关系.注意:点与圆的位置关系可
7、以转化为点到圆心的距离与半径之间的数量关系;反过来,也可以通过这种数量关系判断点与圆的位置关系.2.做一做设AB=3cm,作图说明满足下列要求的图形.(1)到点A和点B的距离都等于2cm的所有点组成的图形.(2)到点A和点B的距离都小于2cm的所有点组成的图形.提示:解决这类题的关键是明确用集合的观点定义的圆、圆的内部、外部的含义.向学生渗透一种常用的数学方法——交集法.注意(2)的图形不包括重叠部分的边界.可先让学生思考:满足条件的点分别与OA、OB有怎样的位置关系?解:(1)到点A和点B
此文档下载收益归作者所有