欢迎来到天天文库
浏览记录
ID:58970246
大小:255.69 KB
页数:27页
时间:2020-09-16
《初三数学圆知识点.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1圆第一课时教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用.圆是轴对称图形,其对称轴是任意一条过圆心的直线.垂直于弦的直径平分弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当水面距离拱顶小于3.5米时要采取措施。问洪水泛滥,水面宽MN=32m时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只
2、要求半径R,然后运用几何代数解求R.解:不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,CD=18R2=302+(R-18)2R2=900+R2-36R+324解得R=34(m)连接OM,设DE=x,在Rt△MOE中,ME=16342=162+(34-x)2162+342-68x+x2=342x2-68x+256=0解得x1=4,x2=64(不合设)∴DE=4∴不需采取紧急措施.一、选择题.1.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D).A.CE=DEB.C.∠BAC=∠BADD.AC>AD(1)(2)(3)2.如图2,⊙O
3、的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是(D)A.4B.6C.7D.83.如图3,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是(D)A.AB⊥CDB.∠AOB=4∠ACDC.D.PO=PD二、填空题1.如图4,AB为⊙O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_8____.(4)(5)2.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为___8__;最长弦长为10____.3.如图5,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_AB=CD______(只需写一个正
4、确的结论)4.(开放题)AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=8,求∠DAC的度数.解答(1)AC、AD在AB的同旁,如右图所示:∵AB=16,AC=8,AD=8,∴AC=(AB),∴∠CAB=60°,同理可得∠DAB=30°,∴∠DAC=30°.(2)AC、AD在AB的异旁,同理可得:∠DAC=60°+30°=90°.24.1圆(第2课时)教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等
5、.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.一、选择题.1.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等;B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是()A.=2B.>C.<2D.不能确定3.如图5,⊙O中,如果=2,那么().A.AB=ACB.AB=ACC.AB<2ACD.AB>2AC(5)(6)二、填空题1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_
6、________.3.如图6,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.答案:一、1.D2.A3.C二、1.圆的旋转不变形2.或3.324.1圆(第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.例2.如图,已知△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为R,求证:===2R.分析:要证明===2R,只要证明=2R,=2R,=2R,即sinA=,sinB
7、=,sinC=,因此,十分明显要在直角三角形中进行.证明:连接CO并延长交⊙O于D,连接DB∵CD是直径∴∠DBC=90°又∵∠A=∠D在Rt△DBC中,sinD=,即2R=同理可证:=2R,=2R∴===2R一、选择题1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().A.140°B.110°C.120°D.130°(1)(2)(3)2.如图2,∠1、∠2、∠3、∠4的大小关系是()A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2D.∠4
此文档下载收益归作者所有