北京初二数学月考试题.docx

北京初二数学月考试题.docx

ID:58967175

大小:109.36 KB

页数:10页

时间:2020-09-16

北京初二数学月考试题.docx_第1页
北京初二数学月考试题.docx_第2页
北京初二数学月考试题.docx_第3页
北京初二数学月考试题.docx_第4页
北京初二数学月考试题.docx_第5页
资源描述:

《北京初二数学月考试题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、求解中考压轴题的四种常见思想方法湖北省黄石市下陆中学 宋毓彬 湖北省黄石市二十一中 皮学军1.中考数学压轴题概述   1.1压轴题的概念中考数学试卷中的试题排列顺序通常都遵循着“从简单到复杂、从易到难”的原则。中考试题中按题型分类的排列顺序一般是:一、选择题(客观题,有些地方将其称作“第Ⅰ卷”);二、填空题(形式简单的主观题);三、解答题(二、三也合称第Ⅱ卷)。在这三类题型中,思维难度较大的题目一般都设置在各类题型的最后一题,被称作压轴题。中考压轴题按其题型的区别及在整个试卷中的位置情况又可分为

2、两类:选择题和填空题型的压轴题,常被称作小压轴题;解答题型压轴题(也即整个试卷的最后一题),叫大压轴题,通常所说的压轴题一般都指大压轴题。 1.2压轴题的特点中考数学压轴题的设计,大都有以下共同特点:知识点多、覆盖面广、条件隐蔽、关系复杂、思路难觅、解法灵活。纵观近几年全国各地数学中考压轴题,呈现了百花齐放的局面,就题型而言,除传统的函数综合题外,还有操作题、开放题、图表信息题、动态几何题、新定义题型、探索题型等,令人赏心悦目。中考压轴题主要是为考察考生综合运用知识的能力而设计的题目,其思维难度

3、高,综合性强,往往都具有较强的选拔功能,是为了有效地区分数学学科中尖子学生与一般学生的试题。在课程改革不断向前推进的形势下,全国各地近年涌现出了大量的精彩的压轴题。丰富的、公平的背景、精巧优美的结构,综合体现出多种解答数学问题的思想方法,贴近生活、关注热点、常中见拙、拙中藏巧、一题多问、层层递进,为不同层次的学生展示自己的才华创设了平台。 1.3压轴题应对策略针对近年全国各地中考数学压轴题的特点,在中考复习阶段,我们要狠抓基础知识的落实,因为基础知识是“不变量”,而所谓的考试“热点”只是与题目的

4、形式有关。要有效地解答中考压轴题,关键是要以不变应万变。加大综合题的训练力度,加强解题方法的训练,加强数学思想方法的渗透,注重“基本模式”的积累与变化,调适学生心理,增强学生信心。学生在压轴题上的困难可能来自多方面的原因,如:基础知识和基本技能的欠缺、解题经验的缺失或训练程度不够、自信心不足等。学生在压轴题上的具体困难则可能是:“不知从何处下手,不知向何方前进”。在求解中考数学压轴题时,重视一些数学思想方法的灵活应用,是解好压轴题的重要工具,也是保证压轴题能求解得“对而全、全而美”的重要前提。本

5、文就2009年全国各地部分中考压轴题为例,简要分析一些重要的数学思想方法在求解中考压轴题时的重要作用。 2.求解中考压轴题的常见思想方法 2.1分类讨论思想代表性题型:动态几何问题,存在性讨论问题。例1.(2009年重庆)已知:如图,在平面直角坐标系中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3。过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E。(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的

6、一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;                                      (3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。解析:(1)由△ADE∽△BCD,及已知条件求得E、D、C坐标,进而

7、求出过点E、D、C的抛物线的解析式:                    (2)EF=2GO成立.点M在该抛物线上,且它的横坐标为,∴点M的纵坐标为.设DM的解析式为将点D、M的坐标分别代入,得  解得 ∴DM的解析式为   ∴F(0,3) EF=2过点D作DK⊥OC于点K,则DA=DK.△DAF≌△DKG,KG=AF=1,GO=1     ∴EF=2GO(3)点P在AB上,G(1,0),C(3,0),则设P(t,2).∴PG=(t-1)+2,PC=(3-t)+2,GC=2          

8、      ①若PG=PC,则(t-1)+2=(3-t)+2解得t=2.∴P(2,2),此时点Q与点P重合.Q(2,2)②若PG=GC,则(t-1)+2=2,解得t=1,P(1,2) 此时GP⊥x轴.GP与该抛物线在第一象限内的交点Q的横坐标为1,∴点Q的纵坐标为.Q(1,)③若PC=GC,则(3-t)+2=2,解得t=3,∴P(3,2)此时PC=GC=2,P与D重合过点Q作QH⊥x轴于点H,则QH=GH,设QH=h,∴Q(h+1,h).解得(舍去).∴Q(,)综上所述,存在三个满足条件的点Q,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。