2015全国建模大赛a 题.doc

2015全国建模大赛a 题.doc

ID:58875614

大小:243.00 KB

页数:29页

时间:2020-09-21

2015全国建模大赛a 题.doc_第1页
2015全国建模大赛a 题.doc_第2页
2015全国建模大赛a 题.doc_第3页
2015全国建模大赛a 题.doc_第4页
2015全国建模大赛a 题.doc_第5页
资源描述:

《2015全国建模大赛a 题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、..赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我

2、们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名):1......2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注

3、意电子版论文中不得出现此页。以上容请仔细核对,特别是参赛队号,如填写错误,论文可能被取消评奖资格。)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):评阅.....人备注送全国评奖统一编号(由赛区组委会填写):全国评阅统一编号(由全国组委会填写):此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。注意电子版论文中不得出现此页,即电子版论文的第一页为标题和摘要页。.....基于matlab与太阳方位角的经纬度计算方法摘要根据影子的变化挖掘出测量地点

4、的信息是一项有挑战性的数学工作,这一工作可能会应用到安全领域的工作之中,本文利用影子的数据挖掘出太阳高度方位信息进而求解出所测量地点的经度纬度实现了成功定位。针对问题一:我们已知该地点位于,并且以时间计时,通过分析时角,太阳高度角,以及当天太阳直射位点的关系,我们得到了影子长度与时间的复杂关系模型,为了精确绘制函数图像,我们在这里采用了根据曲率的变化自适应采样绘图的技术,得到了较为精确的函数图像,通过分析,基本符合实际情况。针对问题二:我们利用已知数据,挖掘出了更多有效信息,通过对影子长度以及时间累积量进行二次多项式拟合,我们找到了包括

5、正午时间。利用正午时间与正午时间的差距,我们找到了当地所在的纬度。接下来我们针对x,y坐标进行散点绘图,发现它们分别呈现线性增长的特性,在这里我们利用最小二乘法找到了其中的线性关系。利用上一步求解出的正午时间,我们求解出了正午影子朝向,即正北方向。在问题立的数学关系模型上,我们又利用matlab求解出了相对精确的纬度信息,信息显示,这一地点大致位于我国乌鲁木齐附近。针对问题三:大致沿用了问题二的数学模型,我们确定了几个可能的日期,求解出了三个可能的坐标:东经107.5°,北纬44.7°,拍摄日期9月30日;东经107.5°,北纬14.7

6、9°,拍摄日期11月1日;东经107.5°,北纬20.59°,拍摄日期12月1日。针对问题四:由于需要从摄像机视频中先测量相关信息,这存在一定的误差。我们在这里一方面利用像素个数进行较为精确的计数测量,另一方面利用透视原理,对机位测量数据进行了一定的矫正,得到了较为精确的数据。继续沿用第二个,第三个模型得到了较为精确地解。其解为:拍摄时间6月23日,北纬50.5521°,东经101°,大致位于蒙古境;拍摄时间为7月23日,北纬41.8135°,东经:101°,大致位于阿拉善盟;拍摄时间为8月23日,北纬33.1815°,东经:101°,

7、大致位于省果洛藏族自治州班玛县。.....关键字:最小二乘法自适应绘图matlab机位矫正数值求解问题重述:如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。2.根据某固定直杆在水平地面上的太阳影子顶点

8、坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。3.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。