欢迎来到天天文库
浏览记录
ID:5886990
大小:67.50 KB
页数:4页
时间:2017-12-27
《平面直角坐标系知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、平面直角坐标系二、知识要点梳理知识点一:有序数对 比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作:(a,b).要点诠释: 对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。知识点二:平面直角坐标系以及坐标的概念 1.平面直角坐标系 在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。水平的
2、数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。 注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。 2.点的坐标 点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应
3、过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。 注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。横、纵坐标的位置不能颠倒。 ②由点的坐标的意义可知:点P(a,b)中,
4、a
5、表示点到y轴的距离;
6、b
7、表示点到x轴的距离。知识点三:点坐标的特征 l.四个象限内点坐标的特征: 两条坐标轴将平面分成4个区域称为象
8、限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-). 2.数轴上点坐标的特征: x轴上的点的纵坐标为0,可表示为(a,0); y轴上的点的横坐标为0,可表示为(0,b). 注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。坐标轴上的点不属于任何一个象限,这一点要特别注意。 3.象限的角平分线上点坐标的特征: 第一、三象限角平分线上点的横、纵坐标相等,可表示为
9、(a,a); 第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a). 注:若点P(a,b)在第一、三象限的角平分线上,则a=b; 若点P(a,b)在第二、四象限的角平分线上,则a=-b。 4.对称点坐标的特征: P(a,b)关于x轴对称的点的坐标为(a,-b); P(a,b)关于y轴对称的点的坐标为(-a,b); P(a,b)关于原点对称的点的坐标为(-a,-b). 5.平行于坐标轴的直线上的点: 平行于x轴的直线上的点的纵坐标相同; 平行于y轴的直线上的点的横坐标相同。 6.各个象限内和
10、坐标轴上点的坐标符号规律:象限横纵坐标符号(a,b)图象第一象限(+,+)a>0,b>0第二象限(-,+)a<0,b>0第三象限(-,-)a<0,b<0第四象限(+,-)a>0,b<0x轴上正半轴(+,0)负半轴(-,0)y轴上正半轴(0,+)负半轴(0,-)原点(0,0)五、特殊位置点的特殊坐标:坐标轴上点P(x,y)连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X轴Y轴原点平行X轴平行Y轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限(x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同
11、纵坐标不同x>0y>0x<0y>0x<0y<0x>0y<0(m,m)(m,-m)知识点四:简单应用 l.用坐标表示地理位置 根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程: (1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; (3)在坐标平面内画出这些点,写出各点的坐标
12、和各个地点的名称.要点诠释: 在建立平面直角坐标系时,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等。在具体问题中要注意分析题目,灵活运用。而建立平面直角坐标系的方法是不唯一的。 2.用坐标表示平移 (1
此文档下载收益归作者所有