第1章反比例函数全章教案.doc

第1章反比例函数全章教案.doc

ID:58838953

大小:223.50 KB

页数:13页

时间:2020-09-24

第1章反比例函数全章教案.doc_第1页
第1章反比例函数全章教案.doc_第2页
第1章反比例函数全章教案.doc_第3页
第1章反比例函数全章教案.doc_第4页
第1章反比例函数全章教案.doc_第5页
资源描述:

《第1章反比例函数全章教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1反比例函数教学目标:一、理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数。二、能根据实际问题中的条件确定反比例函数的关系式。三、能判断一个给定函数是否为反比例函数。通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点。教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。教学方法:类比、启发教学辅助:多媒

2、体教学过程:随着速度的变化,全程所用时间发生怎样的变化?一、创设情景情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h

3、)的变化而变化。问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:v/(km/h)608090100120t/h(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1)。(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述。(3)结合函数的概念,特别强调唯一性,引导讨论问题(3)。情境3:用函数关系式表示下列问题中两个变量之间的

4、关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化。问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数。反比例函数的自变量x的取值范围是不等于0的一切实数。[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正

5、比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1。(2)常量k≠0。(3)自变量x的取值范围是x≠0的一切实数。(4)函数值y的取值范围是非零实数。并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性。二、例题教学练习:1.下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=;(2)y=;(3)y=-;通过这个

6、例题使学生进一步认识反比例函数概念的本质,提高辨别的能力。练习:2.在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有  个。[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式。还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1)与x成反比例。练习:3.若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为      。[说明]这个练习引导学生观察、讨论,并回顾以

7、前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数。例题:第5页例1三、拓展练习1.写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数。如果是,指出比例系数k的值。(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该

8、物体与地面的接触面积S(m2)的变化而变化。2.已知函数y=(m+1)x是反比例函数,则m的值为    。[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数。四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业作业本(1)1.1反比例函数(2)教学目标:一、会用待定系数法求反比例函数的解析式。二、通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。三、会通过已知自变量的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。