2019年高考数学(理)二轮复习专题立体几何.doc

2019年高考数学(理)二轮复习专题立体几何.doc

ID:58818605

大小:2.14 MB

页数:34页

时间:2020-10-25

2019年高考数学(理)二轮复习专题立体几何.doc_第1页
2019年高考数学(理)二轮复习专题立体几何.doc_第2页
2019年高考数学(理)二轮复习专题立体几何.doc_第3页
2019年高考数学(理)二轮复习专题立体几何.doc_第4页
2019年高考数学(理)二轮复习专题立体几何.doc_第5页
资源描述:

《2019年高考数学(理)二轮复习专题立体几何.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高三二轮复习讲练测之讲案【新课标版理科数学】专题五立体几何考向一三视图与几何体的面积、体积【高考改编☆回顾基础】1.【数学文化与三视图】【2018年全国卷Ⅲ文】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【答案】A【解析】观擦图形图可知,俯视图为故答案为A.2.【三视图与空间几何体的体积】【2018年浙江卷改编】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3

2、)是.【答案】63.【空间几何体的体积】【2018年全国卷II文】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.【答案】8π【解析】如下图所示,又,解得,所以,所以该圆锥的体积为.4.【三视图与空间几何体的结构特征】【2018年北京文改编】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为【答案】3【解析】由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐

3、减少,主要考查由三视图求原几何体的面积、体积以及几何体的结构特征,题型以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2019年应注意抓住考查的主要题目类型进行训练,重点有四个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积;四是立体几何与数学文化相结合的问题.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的

4、问题还不了解,他们将体积公式“V=kD3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V=kD3,其中,在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1,k2,k3,那么,k1∶k2∶k3=(  )A.∶∶1B.∶∶2C.1∶3∶D.1∶∶【答案】D【解析】球中,;等边圆柱中,;正方体中,;所以.故选D.【趁热打铁】将一个底面半径为1,高为2的圆锥形

5、工件切割成一个圆柱体,能切割出的圆柱的最大体积为(  )A.B.C.D.【答案】B【解析】如图所示,设圆柱的半径为,高为,体积为,由题意可得,所以,所以圆柱的体积,设,则,由得,在上递增,在上递减,所以圆柱的最大体积,故选B.【例2】【2018届河南省郑州市第一次模拟】刍薨(),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)

6、需要的茅草面积至少为()A.24B.[C.64D.【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成.由三视图中的数据可得其体积为.选A.【方法总结☆全面提升】1.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴

7、露”在外的所有面的面积,在计算时要注意区分“是求侧面积还是求表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和.3.等体积法也称等积转化法或等积变形法,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决与锥体有关的问题,特别是三棱锥的体积.【规范示例☆避免陷阱】【典例】【2016·全国卷Ⅰ改编】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是________.【规范解答】该几何体为一个球去掉八分之一,设球的半径为r,则×πr3=,解得r=2,故该

8、几何体的表面积为×4π×22+×π×22=17π.【

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。