回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt

回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt

ID:58812907

大小:4.12 MB

页数:46页

时间:2020-10-01

回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt_第1页
回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt_第2页
回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt_第3页
回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt_第4页
回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt_第5页
资源描述:

《回归分析新建 Microsoft PowerPoint 演示文稿 ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1回归分析的基本思想及其初步应用1.通过对典型案例的探究,了解回归分析的基本思想、方法及其初步应用.2.会求回归直线方程,并用回归直线方程进行预报.1.线性回归模型及随机误差e的来源.(重点)2.残差及残差分析的方法.(难点)什么是回归分析:“回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和Y之间存在一种相关关系。一般而言,父辈身高者,其子辈身高

2、也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。“回归”一词即源于此。虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据

3、自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是,首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:

4、施化肥量x15202530354045水稻产量y330345365405445450455回顾变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发

5、现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?xy施化肥量水稻产量施化肥量x15202530354045水稻产量y330345365405445450455散点图1020304050500450400350300·······xy施化肥量水稻产量怎样求回归直线?最小二乘法:称为样本点的中心。(3)对两个变量进行的线性分析叫做线性回归分析。2、回归直线方程:(2)相应的直线叫做回归直线。(1)所求直线方程叫做回归直线方程;其中(注意回归直线一定经过样本点的中心

6、)[例1]某班5名学生的数学和物理成绩如下表:学生学科ABCDE数学成绩(x)8876736663物理成绩(y)7865716461(1)画出散点图;(2)求物理成绩y对数学成绩x的线性回归方程;(3)一名学生的数学成绩是96,试预测他的物理成绩.[思路点拨]先利用散点图分析物理成绩与数学成绩是否线性相关,若相关再利用线性回归模型求解.[精解详析](1)散点图如图.(3)x=96,则y=0.625×96+22.05≈82,即可以预测他的物理成绩是82.[一点通]求回归直线方程的基本步骤:例1假设关于某设备的使用年限x和所有

7、支出的维修费用y(万元)有如下的统计数据:x23456Y2.23.85.56.57.0若由此资料所知y对x呈线性相关关系,试求:回归直线方程估计使用年限为10年时,维修费用是多少?解题步骤:作散点图2.把数据列表,计算相应的值,求出回归系数3.写出回归方程,并按要求进行预测说明。例2(2007年广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据。X3456y2.5344.5请画出上表数据的散点图请根据上表提供的数据,用最小二乘法求出y关于x的性回归方程(3)

8、已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)小结:求回归直线方程的步骤(2)所求直线方程叫做回归直线方程;其中(1)作散点图,通过图看出样本点是否呈条状分布,进而判断两个量是否具有线性相关关

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。