华师大教案17.2.1平面直角坐标系1

ID:5880789

大小:109.50 KB

页数:3页

时间:2017-12-27

华师大教案17.2.1平面直角坐标系1_第1页
华师大教案17.2.1平面直角坐标系1_第2页
华师大教案17.2.1平面直角坐标系1_第3页
资源描述:

《华师大教案17.2.1平面直角坐标系1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、课题:17.2.1平面直角坐标系1教学目的知识与技能:1.掌握平面直角坐标系的有关概念;2.能正确画出直角坐标系,以及根据点的坐标找出它的位置、由点的位置确定它的坐标;3.初步理解直角坐标系上的点和有序实数对是一一对应的含义.过程与方法:1.联系数轴知识、统计图知识,经历探索平面直角坐标系的概念的过程;2.通过学生积极动手画图,达到熟练的程度,并充分感受直角坐标系上的点和有序实数对是一一对应的含义.情感与态度:通过操作、探究,体验解析法和图象法表示函数关系的相互转化,感受数形结合的数学思想.教学重点平

2、面直角坐标系的有关概念知识难点正确理解有序实数对教学过程教学方法和手段引入如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了.我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.新课教学问题1例如你去过电影院吗?还记得在电影院是怎么找座位的吗?解因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排

3、,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来.问题2在教室里,怎样确定一个同学的座位?解例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.问题3要在一块矩形ABCD(AB=40mm,AD=25mm)的铁板上钻一个直径为10mm的圆孔,要求:(1)孔的圆周上的点与AB边的最短距离为5mm,(2)孔的圆周上的点与AD边的最短距离为15mm.试问:钻孔时,钻头的中心放在铁板的什么位置?第3页共3页分析圆O的中心应是钻头中心的位置.因为⊙O直径为10mm,所以

4、半径为5mm,所以圆心O到AD边距离为20mm,圆心O到AB边距离为10mm.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangledcoordinatessystem).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.在平面直角坐标系中,任意一点都

5、可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标(abscissa);点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2).  在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限.例1在上图中分别描

6、出坐标是(2,3)、(-2,3)、(3,-2)的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(-2,3)与R(3,-2)是同一点吗?解Q(2,3)与P(3,2)不是同一点;S(-2,3)与R(3,-2)不是同一点.说明从上面的例1、例2可以发现直角坐标系上每一个点的位置都能用一对有序实数第3页共3页例2写出图中的点A、B、C、D、E、F的坐标.观察你所写出的这些点的坐标,回答:(1)在四个象限内的点的坐标各有什么特征?(2)两条坐标轴上的点的坐标各有什么特征?解A(-1,2)、B(2,1)、C

7、(2,-1)、D(-1,-1)、E(0,3)、F(-2,0).(1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数;在第三象限内的点,横坐标是负数,纵坐标是负数;在第四象限内的点,横坐标是正数,纵坐标是负数;(2)x轴上点的纵坐标等于零;y轴上点的横坐标等于零.表示,反之,任何一对有序实数在直角坐标系上都有唯一的一个点和它对应.也就是说直角坐标系上的点和有序实数对是一一对应的.课堂练习P37 习题18.2 第1(1)(3)(4)、3题小结与作业课堂小结1.平面

8、直角坐标系的有关概念及画法;2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;本课作业P37 习题17.2 第2题练习册P本课教育评注(课堂设计理念,实际教学效果及改进设想)从回顾现实生活情境出发,逐渐构建用有序实数对表示平面内点的位置的方法,通过研究点的运动变化,探究出用函数图象表示运动变化过程的思想.第3页共3页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《华师大教案17.2.1平面直角坐标系1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、课题:17.2.1平面直角坐标系1教学目的知识与技能:1.掌握平面直角坐标系的有关概念;2.能正确画出直角坐标系,以及根据点的坐标找出它的位置、由点的位置确定它的坐标;3.初步理解直角坐标系上的点和有序实数对是一一对应的含义.过程与方法:1.联系数轴知识、统计图知识,经历探索平面直角坐标系的概念的过程;2.通过学生积极动手画图,达到熟练的程度,并充分感受直角坐标系上的点和有序实数对是一一对应的含义.情感与态度:通过操作、探究,体验解析法和图象法表示函数关系的相互转化,感受数形结合的数学思想.教学重点平

2、面直角坐标系的有关概念知识难点正确理解有序实数对教学过程教学方法和手段引入如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了.我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.新课教学问题1例如你去过电影院吗?还记得在电影院是怎么找座位的吗?解因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排

3、,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来.问题2在教室里,怎样确定一个同学的座位?解例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.问题3要在一块矩形ABCD(AB=40mm,AD=25mm)的铁板上钻一个直径为10mm的圆孔,要求:(1)孔的圆周上的点与AB边的最短距离为5mm,(2)孔的圆周上的点与AD边的最短距离为15mm.试问:钻孔时,钻头的中心放在铁板的什么位置?第3页共3页分析圆O的中心应是钻头中心的位置.因为⊙O直径为10mm,所以

4、半径为5mm,所以圆心O到AD边距离为20mm,圆心O到AB边距离为10mm.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangledcoordinatessystem).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.在平面直角坐标系中,任意一点都

5、可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标(abscissa);点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2).  在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限.例1在上图中分别描

6、出坐标是(2,3)、(-2,3)、(3,-2)的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(-2,3)与R(3,-2)是同一点吗?解Q(2,3)与P(3,2)不是同一点;S(-2,3)与R(3,-2)不是同一点.说明从上面的例1、例2可以发现直角坐标系上每一个点的位置都能用一对有序实数第3页共3页例2写出图中的点A、B、C、D、E、F的坐标.观察你所写出的这些点的坐标,回答:(1)在四个象限内的点的坐标各有什么特征?(2)两条坐标轴上的点的坐标各有什么特征?解A(-1,2)、B(2,1)、C

7、(2,-1)、D(-1,-1)、E(0,3)、F(-2,0).(1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数;在第三象限内的点,横坐标是负数,纵坐标是负数;在第四象限内的点,横坐标是正数,纵坐标是负数;(2)x轴上点的纵坐标等于零;y轴上点的横坐标等于零.表示,反之,任何一对有序实数在直角坐标系上都有唯一的一个点和它对应.也就是说直角坐标系上的点和有序实数对是一一对应的.课堂练习P37 习题18.2 第1(1)(3)(4)、3题小结与作业课堂小结1.平面

8、直角坐标系的有关概念及画法;2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;本课作业P37 习题17.2 第2题练习册P本课教育评注(课堂设计理念,实际教学效果及改进设想)从回顾现实生活情境出发,逐渐构建用有序实数对表示平面内点的位置的方法,通过研究点的运动变化,探究出用函数图象表示运动变化过程的思想.第3页共3页

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭