欢迎来到天天文库
浏览记录
ID:58806560
大小:999.50 KB
页数:9页
时间:2020-09-27
《二次函数新课讲义.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一讲二次函数的定义知识点归纳:二次函数的定义:一般地,如果是常数,,那么叫做的二次函数.二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例1、函数y=(m+)x+2x-1是二次函数,则m=.例2、下列函数中是二次函数的有()①y=x+;②y=3(x-1)2+2;③y=(x+3)2-2x2;④y=+x.A.1个B.2个C.3个D.4个例3、已知函数y=ax2+bx+c(其中a,b,c是常数),当a时,是
2、二次函数;当a,b时,是一次函数;当a,b,c时,是正比例函数.例4、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式.例5、如图,正方形ABCD的边长为4,P是BC边上一点,QP⊥AP交DC于Q,如果BP=x,△ADQ的面积为y,用含x的代数式表示y.例6.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为
3、E、F,得四边形DECF.设DE=x,DF=y.(1)AE用含y的代数式表示为:AE=;(2)求y与x之间的函数表达式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数表达式.第二讲抛物线图像及性质知识点归纳:考点一、作图“三步取”:一般地,二次函数图像的作法和一次函数及反比例函数图像的作法过程相同,都是三步:列表、描点、连线。规律技巧:列表时注意以0为中心,对称取值(一般取3-4组值)。观察图像,可得抛物线的开口方向、对称轴。例1(1)作二次函数y=x和y=-x2的图象抛物线y=x2y=-
4、x2对称轴顶点坐标开口方向位置增减性最值(2)作二次函数y=2x+1和y=2x-1的图象(3)作二次函数y=(x+1)和y=(-x-1)2的图像考点二、求抛物线的顶点、对称轴的方法1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.考点三、次函数的图象及性质:(1)二次函数y=ax2(a≠0)的图
5、象是一条抛物线,其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a<0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大.(2)二次函数的图象是一条对称轴平行y轴或者与y轴重合的抛物线.顶点为(-,),对称轴x=-;当a>0时,抛物线开口向上,图象有最低点,且x>-,y随x的增大而增大,x<-,y随x的增大而减小;当a<0时,抛物线开口向下,图象有最高点,且x>-,y随x的增大而减小,x<-,y随x的增大而增大.(3)当a>0时,当x=-时,函数有最小值;当a<0时,当xx=-时,函数
6、有最大值考点四、图象的平移:左加右减,上加下减将二次函数y=ax2(a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.⑴将y=ax2的图象向上(c>0)或向下(c<0)平移
7、c
8、个单位,即可得到y=ax2+c的图象.其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同.⑵将y=ax2的图象向左(h<0)或向右(h>0)平移
9、h
10、个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.⑶将y=ax2
11、的图象向左(h<0)或向右(h>0)平移
12、h
13、个单位,再向上(k>0)或向下(k<0)平移
14、k
15、个单位,即可得到y=a(x-h)2+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.例2、已知直线y=-2x+3与抛物线y=ax2相交于A、B两点,且A点坐标为(-3,m).(1)求a、m的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积.例3、求符合下列条件的
16、抛物线y=ax2的表达式:(1)y=ax2经过(1,2);(2)y=ax2与y=x2的开口大小相等,开口方向相反;(3)y=ax2与直线y=x+3交于点(2,m).例4、抛物线y=ax2+bx+c如图所示,则它关于y轴对称的抛物线的表达式是.例5、已知二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5)(1)求m的值,并写出二次函数的表达式;
此文档下载收益归作者所有