直线、平面平行与垂直的判定及其性质,高考历年真题.doc

直线、平面平行与垂直的判定及其性质,高考历年真题.doc

ID:58803353

大小:1.59 MB

页数:10页

时间:2020-09-27

直线、平面平行与垂直的判定及其性质,高考历年真题.doc_第1页
直线、平面平行与垂直的判定及其性质,高考历年真题.doc_第2页
直线、平面平行与垂直的判定及其性质,高考历年真题.doc_第3页
直线、平面平行与垂直的判定及其性质,高考历年真题.doc_第4页
直线、平面平行与垂直的判定及其性质,高考历年真题.doc_第5页
资源描述:

《直线、平面平行与垂直的判定及其性质,高考历年真题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、温馨提示:高考题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。【考点24】直线、平面平行与垂直的判定及其性质2009年考题1.(2009福建高考)设m,n是平面内的两条不同直线,,是平面内的两条相交直线,则//的一个充分而不必要条件是()A.m//且n//B.m//l1且n//lC.m//且n//D.m//且n//l【解析】选B.若,则可得.若则不一定存在.2.(2009广东高考)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平

2、面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;w.w.w.k.s.5.u.c.o.m④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④【解析】选D.①错,②正确,③错,④正确.故选D.3.(2009浙江高考)设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则B.若,则C.若,则D.若,则【解析】选C.对于A、B、D均可能出现,而对于C是正确的.w.w.w.k.s.5.u.c.o.m4.(2

3、009山东高考)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.由平面与平面垂直的判定定理知如果m为平面α内的一条直线,,则,反过来则不一定.所以“”是“”的必要不充分条件.5.(2009四川高考)如图,已知六棱锥的底面是正六边形,则下列结论正确的是()A.B.C.直线∥D.直线所成的角为45°【解析】选D.∵AD与PB在平面的射影AB不垂直,∴A不成立;又平面PAB⊥平面PAE,∴也不成立;BC∥AD∥平面PAD,∴

4、直线∥也不成立。在中,PA=AD=2AB,∴∠PDA=45°.∴D正确.6.(2009江苏高考)设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直。上面命题中,真命题的序号(写出所有真命题的序号).w.w.w.k.s.5.u.c.o.m【解析】考查立体几何中的直线、平面的垂直与平行判定的相关定理。真命题的序号是(1)(2)答案:(1

5、)(2)EABCFE1A1B1C1D1DF17.(2009山东高考)如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E分别是棱AD、AA的中点.w.w.w.k.s.5.u.c.o.m(1)设F是棱AB的中点,证明:直线EE//平面FCC;(2)证明:平面D1AC⊥平面BB1C1C.【解析】(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,连接A1D,C1F1,CF1,因为AB=4,CD=2,且AB//CD,EABCFE1A1B1C1D1D所以CDA1

6、F1为平行四边形,所以CF1//A1D,又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,所以CF1//EE1,又因为平面FCC,平面FCC,所以直线EE//平面FCC.(2)连接AC,在直棱柱中,CC1⊥平面ABCD,AC平面ABCD,所以CC1⊥AC,因为底面ABCD为等腰梯形,AB=4,BC=2,F是棱AB的中点,所以CF=CB=BF,△BCF为正三角形,,△ACF为等腰三角形,且所以AC⊥BC,又因为BC与CC1都在平面BB1C1C内且交于点C,所以AC⊥平面BB1C1C,而平面D1AC,所以平面D1AC⊥平

7、面BB1C1C.8.(2009天津高考)如图,在四棱锥中,,,且DB平分,E为PC的中点,,(Ⅰ)证明w.w.w.k.s.5.u.c.o.m(Ⅱ)证明(Ⅲ)求直线BC与平面PBD所成的角的正切值【解析】(Ⅰ)设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又由题设,E为PC的中点,故,又,所以(Ⅱ)因为,,所以由(Ⅰ)知,,故(Ⅲ)由可知,BH为BC在平面PBD内的射影,所以为直线与平面PBD所成的角。由,在中,,所以直线BC与平面PBD所成的角的正切值为。9.(2009海南宁夏高考)如图,四棱锥S-ABC

8、D的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。(Ⅰ)求证:AC⊥SD;w.w.w.k.s.5.u.c.o.m(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,w.w.w.k.s.5.u.c.o.m使得B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。