欢迎来到天天文库
浏览记录
ID:58800381
大小:867.00 KB
页数:22页
时间:2020-10-25
《2000年全国初中数学联合竞赛试题及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2000年全国初中数学联合竞赛试题2005年全国初中数学联赛初赛试卷及答案 2005年全国初中数学联赛决赛试卷及答案2007年全国初中数学联赛决赛一试试题及答案 2007年全国初中数学联赛决赛第二试试题及答案2008年全国初中数学联赛2008年4月13日上午8:30—9:30一、选择题:(本题满分42分,每小题7分)1、设a2+1=3a,b2+1=3b,且a≠b,则代数式+的值为()(A)5(B)7(C)9(D)112、如图,设AD,BE,CF为△ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()(A)(B)4(C)(D)3、
2、从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是()(A)(B)(C)(D)4、在△ABC中,∠ABC=12°,∠ACB=132°,BM和CN分别是这两个角的外角平分线,且点M,N分别在直线AC和直线AB上,则()(A)BM>CN(B)BM=CN(C)BM3、r,则r的最小值为()(A)()3(B)()4(C)()5(D)6、已知实数x,y满足(x–)(y–)=2008,则3x2–2y2+3x–3y–2007的值为()(A)–2008(B)2008(C)–1(D)1二、填空题:(本题满分28分,每小题7分)1、设a=,则=。2、如图,正方形ABCD的边长为1,M,N为BD所在直线上的两点,且AM=,∠MAN=135°,则四边形AMCN的面积为。3、已知二次函数y=x2+ax+b的图象与x轴的两个交点的横坐标分别为m,n,且4、m5、+6、n7、≤1。设满足上述要求的b的最大值和最小值分别为p,q,则8、p9、+10、11、q12、=。4、依次将正整数1,2,3,…的平方数排成一串:44…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是。答案:B、D、C、B、B、D;–2、、、1。解答:一、1、由题设条件可知a2–3a+1=0,b2–3b+1=0,且a≠b,所以a,b是一元二次方程x2–3x+1=0的两根,故a+b=3,ab=1,因此+====7;2、因为AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆,于是△AEF∽△ABC,故==,即cos∠BAC=,所以sin∠BAC=。在Rt△ABE13、中,BE=ABsin∠BAC=6×=;3、能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个,所以所组成的数是3的倍数的概率是=;4、∵∠ABC=12°,BM为∠ABC的外角平分线,∴∠MBC=(180°–12°)=84°,又∠BCM=180°–∠ACB=180°–132°=48°,∴∠BCM=180°–84°–48°=48°,∴BM=BC,又∠ACN=(180°–∠ACB)14、=(180°–132°)=24°,∴∠BNC=180°–∠ABC–∠BCN=180°–12°–(∠ACB+∠CAN)=12°=∠ABC,∴CN=CB,因此,BM=BC=CN;5、容易知道,4天之后就可以出现5种商品的价格互不相同的情况。设5种商品降价前的价格为a,过了n天,n天后每种商品的价格一定可以表示为a∙(1–10%)k∙(1–20%)n–k=a∙()k∙()n–k,其中k为自然数,且0≤k≤n,要使r的值最小,五种商品的价格应该分别为:a∙()i∙()n–i,a∙()i+1∙()n–i–1,a∙()i+2∙()n–i–2,a∙()i+315、∙()n–i–3,a∙()i+4∙()n–i–4,其中i为不超过n的自然数,所以r的最小值为=()4;6、∵(x–)(y–)=2008,∴x–==y+,y–==x+,由以上两式可得x=y,所以(x–)2=2008,解得x2=2008,所以3x2–2y2+3x–3y–2007=3x2–2x2+3x–3x–2007=x2–2007=1;二、1、∵a2=()2==1–a,∴a2+a=1,∴原式====–=–(1+a+a2)=–(1+1)=–2;2、设BD中点为O,连AO,则AO⊥BD,AO=OB=,MO==,∴MB=MO–OB=。又∠ABM=∠NDA16、=135°,∠NAD=∠MAN–∠DAB–∠MAB=135°–90°–∠MAB=45°–∠MAB=∠AMB,所以△ADN∽△MBA,故=,从而DN=∙
3、r,则r的最小值为()(A)()3(B)()4(C)()5(D)6、已知实数x,y满足(x–)(y–)=2008,则3x2–2y2+3x–3y–2007的值为()(A)–2008(B)2008(C)–1(D)1二、填空题:(本题满分28分,每小题7分)1、设a=,则=。2、如图,正方形ABCD的边长为1,M,N为BD所在直线上的两点,且AM=,∠MAN=135°,则四边形AMCN的面积为。3、已知二次函数y=x2+ax+b的图象与x轴的两个交点的横坐标分别为m,n,且
4、m
5、+
6、n
7、≤1。设满足上述要求的b的最大值和最小值分别为p,q,则
8、p
9、+
10、
11、q
12、=。4、依次将正整数1,2,3,…的平方数排成一串:44…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是。答案:B、D、C、B、B、D;–2、、、1。解答:一、1、由题设条件可知a2–3a+1=0,b2–3b+1=0,且a≠b,所以a,b是一元二次方程x2–3x+1=0的两根,故a+b=3,ab=1,因此+====7;2、因为AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆,于是△AEF∽△ABC,故==,即cos∠BAC=,所以sin∠BAC=。在Rt△ABE
13、中,BE=ABsin∠BAC=6×=;3、能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个,所以所组成的数是3的倍数的概率是=;4、∵∠ABC=12°,BM为∠ABC的外角平分线,∴∠MBC=(180°–12°)=84°,又∠BCM=180°–∠ACB=180°–132°=48°,∴∠BCM=180°–84°–48°=48°,∴BM=BC,又∠ACN=(180°–∠ACB)
14、=(180°–132°)=24°,∴∠BNC=180°–∠ABC–∠BCN=180°–12°–(∠ACB+∠CAN)=12°=∠ABC,∴CN=CB,因此,BM=BC=CN;5、容易知道,4天之后就可以出现5种商品的价格互不相同的情况。设5种商品降价前的价格为a,过了n天,n天后每种商品的价格一定可以表示为a∙(1–10%)k∙(1–20%)n–k=a∙()k∙()n–k,其中k为自然数,且0≤k≤n,要使r的值最小,五种商品的价格应该分别为:a∙()i∙()n–i,a∙()i+1∙()n–i–1,a∙()i+2∙()n–i–2,a∙()i+3
15、∙()n–i–3,a∙()i+4∙()n–i–4,其中i为不超过n的自然数,所以r的最小值为=()4;6、∵(x–)(y–)=2008,∴x–==y+,y–==x+,由以上两式可得x=y,所以(x–)2=2008,解得x2=2008,所以3x2–2y2+3x–3y–2007=3x2–2x2+3x–3x–2007=x2–2007=1;二、1、∵a2=()2==1–a,∴a2+a=1,∴原式====–=–(1+a+a2)=–(1+1)=–2;2、设BD中点为O,连AO,则AO⊥BD,AO=OB=,MO==,∴MB=MO–OB=。又∠ABM=∠NDA
16、=135°,∠NAD=∠MAN–∠DAB–∠MAB=135°–90°–∠MAB=45°–∠MAB=∠AMB,所以△ADN∽△MBA,故=,从而DN=∙
此文档下载收益归作者所有