欢迎来到天天文库
浏览记录
ID:58639994
大小:6.16 MB
页数:13页
时间:2020-10-17
《2013年高考理科数学江苏卷试题与答案word解析版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(2013江苏,1)函数的最小正周期为__________.2.(2013江苏,2)设z=(2-i)2(i为虚数单位),则复数z的模为__________.3.(2013江苏,3)双曲线的两条渐近线的方程为__________.4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n的值是__________.6.(2013江苏,6)抽样统计甲
2、、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为__________.7.(2013江苏,7)现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=__________.9.(2013
3、江苏,9)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是__________.10.(2013江苏,10)设D,E分别是△ABC的边AB,BC上的点,,.若(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy中,椭圆C的标准方程为(a>0,b>0),右焦点为F,右准
4、线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2.若,则椭圆C的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy中,设定点A(a,a),P是函数(x>0)图象上一动点.若点P,A之间的最短距离为,则满足条件的实数a的所有值为__________.14.(2013江苏,14)在正项等比数列{an}中,,a6+a7=3.则满足a1+a2+…+an>a1a2…an的最大正整数n的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2
5、013江苏,15)(本小题满分14分)已知a=(cosα,sinα),b=(cosβ,sinβ),0<β<α<π.(1)若
6、a-b
7、=,求证:a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆
8、心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min,在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cos
9、C=.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.20.(2013江苏,20)(本小题满分16分)设函数f(x)=lnx-ax,g(
此文档下载收益归作者所有