欢迎来到天天文库
浏览记录
ID:58635442
大小:170.28 KB
页数:7页
时间:2020-10-17
《《等式性质与不等式性质》公开课优秀教案教学设计(高中必修第一册).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【新教材】2.1等式性质与不等式性质教学设计(人教A版)等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1.掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2.进一步掌握作差、作商、综合法等比较法比较实数的大小.3.通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学
2、抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。重点:掌握不等式性质及其应用.难点:不等式性质的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、
3、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1、两个实数比较大小的方法作差法a-b>0⟺a>ba-b=0⟺a=ba-b<0⟺a
4、1⟺a>bab=1⟺a=bab<1⟺a”或“<”填空:(1)如果a>b,cb>0,c5、3)如果a>b>0,那么1a2______1b2(4)如果a>b>c>0,那么ca_______cb【答案】(1)>(2)<(3)<(4)<题型二比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小(2).已知a>b>0,c>0,求ca>cb。【答案】(1)见解析(2)见证明【解析】(1)因为(x+2)(x+3)-(x+1)(x+4)=x2+5x+6-(x2+5x+4)=2>0,所以(x+1)(x+2)>(x+1)(x+4)(2)证明:因为a>b>0,所以ab>0,1ab>0,于是a6、∙1ab>b∙1ab,即1b>1a.由c>0,得ca>cb.解题技巧:(比较法的基本步骤)1、作差(或作商)2.变形3.定号(与0比较或与1比较).跟踪训练二1.比较x+3x+7和x+4x+6的大小.2.已知a>b,证明a>a+b2>b.【答案】(1)见解析(2)见证明【解析】(1)解:x+3x+7-x+4x+6=x2+10x+21-x2+10x+24。=-3<0所以x+3x+70;a+b2-b=a+b-2b2=a-b2>0所以a>a+b2>7、b.题型三综合应用例3(1)已知28、形的面积S=12ab,∵25=a2+b2≥2ab,∴ab≤252,则三角形的面积S=12ab≤12×252=254,即这个直角三角形面积的最大值等于254.解题技巧:(重要不等式的应用及多项式的取值范围)1、利用已知条件列出满足的等式和不等式,然后利用重要不等式解决相应的问题。(注意等于号满足的条件)2、多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法)跟踪训练三1.某学习小组,
5、3)如果a>b>0,那么1a2______1b2(4)如果a>b>c>0,那么ca_______cb【答案】(1)>(2)<(3)<(4)<题型二比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小(2).已知a>b>0,c>0,求ca>cb。【答案】(1)见解析(2)见证明【解析】(1)因为(x+2)(x+3)-(x+1)(x+4)=x2+5x+6-(x2+5x+4)=2>0,所以(x+1)(x+2)>(x+1)(x+4)(2)证明:因为a>b>0,所以ab>0,1ab>0,于是a
6、∙1ab>b∙1ab,即1b>1a.由c>0,得ca>cb.解题技巧:(比较法的基本步骤)1、作差(或作商)2.变形3.定号(与0比较或与1比较).跟踪训练二1.比较x+3x+7和x+4x+6的大小.2.已知a>b,证明a>a+b2>b.【答案】(1)见解析(2)见证明【解析】(1)解:x+3x+7-x+4x+6=x2+10x+21-x2+10x+24。=-3<0所以x+3x+70;a+b2-b=a+b-2b2=a-b2>0所以a>a+b2>
7、b.题型三综合应用例3(1)已知28、形的面积S=12ab,∵25=a2+b2≥2ab,∴ab≤252,则三角形的面积S=12ab≤12×252=254,即这个直角三角形面积的最大值等于254.解题技巧:(重要不等式的应用及多项式的取值范围)1、利用已知条件列出满足的等式和不等式,然后利用重要不等式解决相应的问题。(注意等于号满足的条件)2、多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法)跟踪训练三1.某学习小组,
8、形的面积S=12ab,∵25=a2+b2≥2ab,∴ab≤252,则三角形的面积S=12ab≤12×252=254,即这个直角三角形面积的最大值等于254.解题技巧:(重要不等式的应用及多项式的取值范围)1、利用已知条件列出满足的等式和不等式,然后利用重要不等式解决相应的问题。(注意等于号满足的条件)2、多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法)跟踪训练三1.某学习小组,
此文档下载收益归作者所有