欢迎来到天天文库
浏览记录
ID:58624900
大小:515.00 KB
页数:21页
时间:2020-10-17
《二次函数提高难题练习及答案二.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.(2014•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为: y=x2﹣x ;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH
2、的面积为s,当时,确定点Q的横坐标的取值范围.12.(2014•舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.13.(2014年广东汕尾,第25题10分)如图,已
3、知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.16.(2014•武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)
4、当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.24.(2014•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.(第1题图)25.(2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c
5、的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.(第2题图)考点:二次函数综合题分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.(2)平行四边形对边平行且相等,恰得MN为OF,即为中位线,进而横坐标易得,D为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点
6、纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O点右边时,所求三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣
7、,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF的中位线,∴xD=xN=•xG=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),∴,解得,∴y=﹣x+2.∵Q在抛物线y=x2﹣x上,∴设Q的坐标为(x,x2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K
8、(x,﹣x+2),∵S△PKQ=•(yK﹣yQ)•(xQ﹣xP),S△HKQ=•(yK﹣yQ)•(xH﹣xQ),∴S△PQH=S△PKQ+S△HKQ=•(yK﹣yQ)•(xQ﹣xP)+•(yK﹣yQ)•(xH﹣xQ)=•(yK﹣yQ)•(xH﹣xP)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK
此文档下载收益归作者所有