欢迎来到天天文库
浏览记录
ID:58619498
大小:27.50 KB
页数:3页
时间:2020-10-17
《初二数学因式分解讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、十字相乘法一、导入二、前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。因此,我们得到x2+(p+q)x+pq=(x+p)(x+q).课前练习:下列各式因式分解1.-x2+2x+152.(x+y)2-8(x+y)+48;3.x4-7x2+18;4.x2-5xy+6y2。答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4);3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。
2、我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。二、新课例1把2x2-7x+3因式分解。分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:
3、3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。用画十字交叉线方法表示下列四种情况:11131-11-32×32×12×-32×-11×3+2×11×1+2×31×(-3)+2×(-1)1×(-1)+2×(-3)=5=7=-5=-7经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。解2x2-7x+3=(x-3)(2x-1)。一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c
4、1c2,把a1,a2,c1,c2排列如下:a1c1a2×c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2)。像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。例2把6x2-7x-5分解因式。分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列
5、,可有8种不同的排列方法,其中的一种213×-52×(-5)+3×1=-7是正确的,因此原多项式可以用直字相乘法分解因式。解6x2-7x-5=(2x+1)(3x-5)。指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是1-31×51×5+1×(-3)=2所以x2+2x-15=(x-
6、3)(x+5)。例3把5x2+6xy-8y2分解因式。分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即125×-41×(-4)+5×2=6解5x2+6xy-8y2=(x+2y)(5x-4y)。指出:原式分解为两个关于x,y的一次式。例4把(x-y)(2x-2y-3)-2分解因式。分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先化简,进行多项式的乘法运算,把变形后的多项式再因式分解。问:两
7、个乘积的式子有什么特点,用什么方法进行多项式的乘法运算最简便?答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。解(x-y)(2x-2y-3)-2=(x-y)[2(x-y)-3]-21-2=2(x-y)2-3(x-y)-22×+1=[(x-y)-2][2(x-y)+1]1×1+2×(-2)=-3=(x-y-2)(2x-2y+1)。指出:把(x-y)看作一个整体进
8、行因式分解,这又是运用了数学中的“整体”思想方法。三、课堂练习1.用十字相乘法因式分解:(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27。2.把下列各式因式分解:(1)6x2-13x+6y2;(2)8x2y2+6xy-35;(3)18x2-21xy+5y2;(4)2(a+b)2+
此文档下载收益归作者所有