高一数学教案:分层抽样3.pdf

高一数学教案:分层抽样3.pdf

ID:58614664

大小:99.16 KB

页数:3页

时间:2020-10-17

高一数学教案:分层抽样3.pdf_第1页
高一数学教案:分层抽样3.pdf_第2页
高一数学教案:分层抽样3.pdf_第3页
资源描述:

《高一数学教案:分层抽样3.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.3分层抽样教学目标:1、知识与技能:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。教学设想:【创设情景】假设某地区有高中生2400人,初中生10900人,小学生

2、11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?【探究新知】一、分层抽样的定义。一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这

3、层个体数量与总体容量的比相等。二、分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分。(2)按比例确定每层抽取个体的个数。(3)各层分别按简单随机抽样的方法抽取。(4)综合每层抽样,组成样本。【说明】(1)分层需遵循不重复、不遗漏的原则。(2)抽取比例由每层个体占总体的比例确定。(3)各层抽样按简单随机抽样进行。探究交流(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行()第1页共3页A、每层等可能抽样B、每层不等可能抽样C、所有层按同一抽样比等可能抽样(2)如果采用分层抽样,从个体数为N的总体中

4、抽取一个容量为n样本,那么每个个体被抽到的可能性为()11nnA.NB.nC.ND.N点拨:(1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C。(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量比,故此题选C。知识点2简单随机抽样、系统抽样、分层抽样的比较适用类别共同点各自特点联系范围简单(1)抽样过程中每总体个从总体中逐个抽取随机个个体被抽到数较少抽样的可能性相等将总体均分成几部在起始部分(2)每次抽出个体分,按预先制定的规样时采用简总体个数较多系统后不再将它放则在各部分抽取随机抽样回,即不放回抽

5、样总体由抽样分层抽样时采差异明将总体分成几层,分层用简单随机抽显的几分层进行抽取抽样样或系统抽样部分组成【例选精析】例1、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25B.15,15,15C.10,5,30D15,10,20[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选D。例2:一个

6、地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。[分析]采用分层抽样的方法。解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层。第2页共3页(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各乡镇抽取人数分别为60

7、人、40人、100人、40人、60人。(3)将300人组到一起,即得到一个样本。【课堂练习】P52练习1.2.3【课堂小结】1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。(3)在每层抽样时,应采用简单随机抽样或系统

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。