人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt

人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt

ID:58606625

大小:349.00 KB

页数:25页

时间:2020-10-20

人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt_第1页
人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt_第2页
人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt_第3页
人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt_第4页
人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt_第5页
资源描述:

《人教A版(选修2-3)3.1回归分析的基本思想及其初步应用(三)ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1回归分析的基本思想及其初步应用(三)高二数学选修2-3第三章统计案例9/29/2021郑平正制作郑平正制作比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修2-3——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解相关指数R2和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果9/29/2021郑平正制作复习回顾1、线性回归模型:y=bx+

2、a+e,(3)其中a和b为模型的未知参数,e称为随机误差。y=bx+a+e,E(e)=0,D(e)=(4)2、数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。3、对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为:称为残差平方和,它代表了随机误差的效应。9/29/2021郑平正制作4、两个指标:(1)类比样本方差估计总体方差的思想,可以用作为的估计量,越小,预报精度越高。(2)我们可以用相关指数R2来刻画回归的效果,其计算公式是:R21,说明回归方程拟合的越

3、好;R20,说明回归方程拟合的越差。9/29/2021郑平正制作表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。5、残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.62

4、72.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。9/29/2021郑平正制作残差图的制作及作用1、坐标纵轴为残差变量,横轴可以有不同的选择;2、若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;3、对于远离横轴的点,要特别注意。身高与体重残差图异常点错误数据模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为

5、的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。9/29/2021郑平正制作例1在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753解:9/29/2021郑平正制作例1在一段时间内,某中商品

6、的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753列出残差表为0.994因而,拟合效果较好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.49/29/2021郑平正制作例2关于x与y有如下数据:有如下的两个线性模型:(1);(2)试比较哪一个拟合效果更好。x24568y30406050709/29/2021郑平正制作6、注意回归模型的适用范围:(1)回归方程只适用于我们所研究的样本的总体。样本数据来自

7、哪个总体的,预报时也仅适用于这个总体。(2)模型的时效性。利用不同时间段的样本数据建立的模型,只有用来对那段时间范围的数据进行预报。(3)建立模型时自变量的取值范围决定了预报时模型的适用范围,通常不能超出太多。(4)在回归模型中,因变量的值不能由自变量的值完全确定。正如前面已经指出的,某个女大学生的身高为172cm,我们不能利用所建立的模型预测她的体重,只能给出身高为172cm的女大学生的平均体重的预测值。9/29/2021郑平正制作7、一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变

8、量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。9/29/2021郑平正制作案例2一只红铃

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。