欢迎来到天天文库
浏览记录
ID:57292985
大小:403.00 KB
页数:20页
时间:2020-08-10
《【数学】3.1-回归分析的基本思想及其初步应用-课件(人教A版选修2-3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1回归分析的基本思想及其初步应用比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修2-3——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解残差图的作用了解相关指数R2和模型拟合的效果之间的关系利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果最小二乘法:称为样本点的中心。回归直线过样本点中心例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg48575
2、05464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.2.回归方程:1.散点图;探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于60.31
3、6kg。即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的值。我们可以用下面的线性回归模型来表示:y=bx+a+e,(3)其中a和b为模型的未知参数,e称为随机误差。y=bx+a+e,E(e)=0,D(e)=(4)在线性回归模型(4)中,随机误差e的方差越小,通过回归直线(5)预报真实值y的精度越高。随机误差是引起预报值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差。另一方面,由于公式(1)和(2)中和为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因。思考:产生随
4、机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、用线性回归模型近似真实模型所引起的误差;2、忽略了其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;3、身高y的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。探究:e是用预报真实值Y的随机误差,它是一个不可观测的量,那么怎样研究随机误差呢?回归模型:其估计值为而言,它们的随机误差对于样本点显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接
5、近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。我们可以用相关指数R2来刻画回归的效果,其计算公式是1354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源表1-3从表3-1中可以看出,解析变量对总效应约贡献了64%,即R20.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比
6、随机误差的效应大得多。我们可以用相关指数R2来刻画回归的效果,其计算公式是一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。相关系数1.计算公式2.相关
7、系数的性质(1)
8、r
9、≤1.(2)
10、r
11、越接近于1,相关程度越大;
12、r
13、越接近于0,相关程度越小.问题:达到怎样程度,x、y线性相关呢?它们的相关程度怎样呢?相关系数r>0正相关;r<0负相关.通常,r∈[-1,-0.75]--负相关很强;r∈[0.75,1]—正相关很强;r∈[-0.75,-0.3]--负相关一般;r∈[0.3,0.75]—正相关一般;r∈[-0.25,0.25]--相关性较弱;例2:一只红铃虫的产卵数y与温度x有关,现收集了7组观测数据,试建立y与x之间的回归方程解:1)作散点图;从
此文档下载收益归作者所有