欢迎来到天天文库
浏览记录
ID:58580356
大小:1.19 MB
页数:74页
时间:2020-10-20
《第6章模糊神经网络2015ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、模糊神经网络“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将互相排斥。”——模糊数学创始人L.A.Zadeh教授互克性原理雨的大小风的强弱人的胖瘦年龄大小个子高低天气冷热客观世界的模糊性反映在人脑中,便产生了概念上的模糊性;人巧妙地利用自已建立的模糊概念来进行判断、推理和控制,完成那些现代先进设备所不能完成的工作:人们几乎可以同样地辨认胖子和瘦子,美丽和丑陋;人们无须测量车速便可明智地躲过川流不息的车队;一行草书虽然大异于整齐的印刷字体,却照样可以被人看懂。在科学发展的今
2、天,尤其在工程研究设计领域,模糊问题无法回避,要求对数据进行定量分析。模糊概念定量分析?1、模糊理论1965年,Zadeh教授发表论文“模糊集合”(Fuzzyset),标志模糊数学的诞生。模糊集合的基本思想是把经典集合中的绝对隶属关系灵活化,即元素对“集合”的隶属度不再是局限于取0或1,而是可以取从0到1间的任一数值。用隶属函数(MembershipFunction)来刻画处于中间过渡的事物对差异双方所具有的倾向性。隶属度(MembershipDegree)就表示元素隶属于集合的程度。设X是论域,映射A(x):X→[0,
3、1]确定了一个X上的模糊子集A,A(x)称为A的隶属函数。例1例2隶属函数是模糊理论中的重要概念,实际应用中经常用到以下三类隶属函数:(1)S函数(偏大型隶属函数)注:(a、b为待定参数)(2)Z函数(偏小型隶属函数)这种隶属函数可用于表示像年轻、冷、矮、淡等偏向小的一方的模糊现象。(3)∏函数(中间型隶属函数)这种隶属函数可用于表示像中年、适中、平均等趋于中间的模糊现象。图a、b、c分别表示偏大型、偏小型和中间型常用的模糊分布有矩形分布或半矩形分别、梯形或半梯形分布、抛物线型分布、正态分布、高斯分布、钟型函数等等。(1
4、)矩形或半矩形分布(2)梯形或半梯形分布(3)抛物线形分布(4)正态分布(5)高斯分布钟型函数三角形隶属函数梯形隶属函数高斯形隶属函数钟型隶属函数2、模糊系统(FussySystem,简称FS)许多实际的应用系统很难用准确的术语来描述。如化学过程中的“温度很高”、“反应骤然加快”等。模糊系统(也称模糊逻辑系统)就是以模糊规则为基础而具有模糊信息处理能力的动态模型。2.1模糊系统的构成模糊系统(也称模糊逻辑系统)就是以模糊规则为基础而具有模糊信息处理能力的动态模型。它由四部分构成,如下图:(1)模糊化接口(Fuzzific
5、ation)模糊化接口主要将检测输入变量的精确值根据其模糊度划分和隶属度函数转换成合适的模糊值。为了尽量减少模糊规则数,可对于检测和控制精度要求高的变量划分多(一般5一7个)的模糊度,反之则划分少(一般3个)的模糊度。当完成变量的模糊度划分后,需定义变量各模糊集的隶属函数。(2)知识库(knowledgebase)知识库中存贮着有关模糊控制器的一切知识,包含了具体应用领域中的知识和要求的控制目标,它们决定着模糊控制器的性能,是模糊控制器的核心。如专家经验等。比如:If浑浊度清,变化率零,then洗涤时间短If浑浊度较浊,
6、变化率小,then洗涤时间标准(3)模糊推理机(FuzzyInferenceEngine)根据模糊逻辑法则把模糊规则库中的模糊“if-then”规则转换成某种映射。模糊推理,这是模糊控制器的核心,模拟人基于模糊概念的推理能力。(4)反模糊化器(Defuzzification)把输出的模糊量转化为实际用于控制的清晰量。按照常见的形式,模糊推理系统可分为:纯模糊逻辑系统高木-关野(Takagi-Sugeno)模糊逻辑系统其他模糊逻辑系统2.2模糊系统的分类2.2.1纯模糊逻辑系统纯模糊逻辑系统仅由知识库和模糊推理机组成。其输
7、入输出均是模糊集合。××纯模糊逻辑系统结构图纯模糊逻辑系统的优点:提供了一种量化专辑语言信息和在模糊逻辑原则下系统地利用这类语言信息的一般化模式;缺点:输入输出均为模糊集合,不易为绝大数工程系统所应用。2.2.2高木-关野模糊系统该系统是由日本学者Takagi和Sugeno提出的,系统输出为精确值,也称为T-S模糊系统或Sugeno系统。举例:典型的一阶Sugeno型模糊规则形式如下:其中:x和y为输入语言变量;A和B为推理前件的模糊集合;z为输出语言变量;p、q、k为常数。2.3自适应模糊系统自适应模糊系统是指具有学习
8、算法的模糊逻辑系统,其中模糊逻辑系统是由服从模糊逻辑规则的一系列“If-then”规则构造的;学习算法则依靠数据信息来调整模糊逻辑系统的参数。自适应模糊系统被认为是通过学习能自动产生其模糊规则的模糊逻辑系统。(1)从知识的表达方式来看模糊系统可以表达人的经验性知识,便于理解,而神经网络只能描述大量数据之间的复杂函数关
此文档下载收益归作者所有