欢迎来到天天文库
浏览记录
ID:58493447
大小:2.55 MB
页数:17页
时间:2020-10-21
《考点强化与斜面相关联的平抛运动ppt课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点2与斜面相关联的平抛运动010203课堂互动多维训练备选训练课堂互动模型阐述:平抛运动与斜面相结合的模型,其特点是做平抛运动的物体落在斜面上,包括两种情况:(1)物体从空中抛出落在斜面上;(2)从斜面上抛出落在斜面上。一、物体从空中抛出落在斜面上,如图所示分解速度:水平:vx=v0竖直:vy=gttanθ=vx/vy=v0/gtθxyv0θvv0vy垂直撞击斜面分解位移:水平:x=v0t竖直:y=gt2/2tanθ=vy/vx=gt/v0课堂互动一、物体从斜面上抛出落在斜面上(如右图所示)分解位移:
2、水平:x=v0t竖直:y=gt2/2θv0θxyαvv0vy分解速度:水平:vx=v0竖直:vy=gt方法指导在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决。课堂互动【例2】(2019·河南信阳一模)如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出,经过3s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,不计空气阻力(sin37°=0.6,cos37°=0.8,g取10m/s2)。
3、则运动员落到斜坡上时速度方向与水平方向的夹角φ满足()A.tanφ=1.33B.tanφ=1.44C.tanφ=1.50D.tanφ=2.00课堂互动【拓展】 在【例2】中,若运动员从O点飞出的初速度为20m/s,则运动员离开O点后离斜坡的最远距离为()A.30mB.15mC.18mD.9m课堂互动方法技巧——与斜面相关联的平抛运动的分解方法与技巧(1)如果知道速度的大小或方向,应首先考虑分解速度。(2)如果知道位移的大小或方向,应首先考虑分解位移。(3)两种分解方法①沿水平方向的匀速运动和竖直方向的自
4、由落体运动;②沿斜面方向的匀加速运动和垂直斜面方向的匀减速运动。多维训练多维训练2.(多选)如图,小球在倾角为θ的斜面上方O点处以速度v0水平抛出,落在斜面上的A点时速度的方向与斜面垂直,重力加速度为g,根据上述条件可以求出()A.小球由O点到A点的时间B.O点距离地面的高度C.小球在A点速度的大小D.小球从O点到A点的水平距离备选训练A.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tanθ=2tanφB.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tanφ=2tanθC.小球A、B
5、在空中运动的时间比为2tan2θ∶1D.小球A、B在空中运动的时间比为tan2θ∶1转到解析1.(多选)如图所示,一固定斜面倾角为θ,将小球A从斜面顶端以速率v0水平向右抛出,击中了斜面上的P点;将小球B从空中某点以相同速率v0水平向左抛出,恰好垂直斜面击中Q点。不计空气阻力,重力加速度为g,下列说法正确的是()备选训练转回原题备选训练2.(多选)如图示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得AB∶BC∶CD=5:3:1由此可判断
6、()A.A、B、C处三个小球运动时间之比为1:2:3B.A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1C.A、B、C处三个小球的初速度大小之比为3:2:1D.A、B、C处三个小球的运动轨迹可能在空中相交转到解析v3v1v2备选训练转回原题备选训练3.(多选)将一小球以水平速度v0=10m/s从O点向右抛出,经1.73s小球恰好垂直落到斜面上的A点,不计空气阻力,g=10m/s2,B点是小球做自由落体运动在斜面上的落点,如图示,以下判断正确的是()A.斜面的倾角约是30°B.小球的抛
7、出点距斜面的竖直高度约是15mC.若将小球以水平速度v0′=5m/s向右抛出,它一定落在AB的中点P的上方D.若将小球以水平速度v0′=5m/s向右抛出,它一定落在AB的中点P处转到解析vv0vyh备选训练转到解析
此文档下载收益归作者所有