综合题之线段和差最值问题.doc

综合题之线段和差最值问题.doc

ID:58425959

大小:609.00 KB

页数:6页

时间:2020-05-12

综合题之线段和差最值问题.doc_第1页
综合题之线段和差最值问题.doc_第2页
综合题之线段和差最值问题.doc_第3页
综合题之线段和差最值问题.doc_第4页
综合题之线段和差最值问题.doc_第5页
资源描述:

《综合题之线段和差最值问题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、中考数学压轴题解题策略线段和差最值的存在性问题解题策略专题攻略两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1图2图3例题解析例1、如图1-1,抛物线y=x2-2x

2、-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.图1-1【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此PA+PC最小,△PAC的周长也最小.由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2).图1-2图1-3例2、如图,抛物线与y轴交于点A,B是OA的中点.一个动点G从点B出发,先经过x轴上的点M,再经过抛物线对称轴上的点N,然后返回到点A.如果动点G走过的路程最短,请找

3、出点M、N的位置,并求最短路程.图2-1【解析】如图2-2,按照“台球两次碰壁”的模型,作点A关于抛物线的对称轴对称的点A′,作点B关于x轴对称的点B′,连结A′B′与x轴交于点M,与抛物线的对称轴交于点N.在Rt△AA′B′中,AA′=8,AB′=6,所以A′B′=10,即点G走过的最短路程为10.根据相似比可以计算得到OM=,MH=,NH=1.所以M(,0),N(4,1).图2-2例3、如图3-1,抛物线与y轴交于点A,顶点为B.点P是x轴上的一个动点,求线段PA与PB中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P的坐标.图3-1【解析】题目读起来像绕口令,其实就是求

4、P

5、A-PB

6、的最小值与最大值.由抛物线的解析式可以得到A(0,2),B(3,6).设P(x,0).绝对值

7、PA-PB

8、的最小值当然是0了,此时PA=PB,点P在AB的垂直平分线上(如图3-2).解方程x2+22=(x-3)2+62,得.此时P.在△PAB中,根据两边之差小于第三边,那么

9、PA-PB

10、总是小于AB了.如图3-3,当点P在BA的延长线上时,

11、PA-PB

12、取得最大值,最大值AB=5.此时P.图3-2图3-3例4、如图4-1,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,求PK+QK的最小值.图4-1【解析】如图4-2,点Q关于直线BD的对

13、称点为Q′,在△KPQ′中,PK+QK总是大于PQ′的.如图4-3,当点K落在PQ′上时,PK+QK的最小值为PQ′.如图4-4,PQ′的最小值为Q′H,Q′H就是菱形ABCD的高,Q′H=.这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图4-2图4-3图4-4例五、如图,∠AOB=45°,P是∠AOB内一定点,PO=10,Q,R分别是OA,OB上的动点,求△PQR周长的最小值.(要求画出示意图,写出解题过程)【解析】例3.解:分别作点P关于OA,OB的对称点M,N,连接OM,ON,MN,MN交OA,OB于点Q,R,连接PR,PQ,此时△PQR周长的最小值等于MN.由轴对称

14、性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN==10,即△PQR周长的最小值等于10。例6、如图6-1,已知A(0,2)、B(6,4)、E(a,0)、F(a+2,0),求a为何值时,四边形ABEF周长最小?请说明理由.图6-1【解析】在四边形ABEF中,AB、EF为定值,求AE+BF的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF向左平移两个单位,得到线段ME.如图6-3,作点A关于x轴的对称点A′,MA′与x轴的交点E,满足AE+ME最小.由△A′OE∽△BHF,得

15、.解方程,得.图6-2图6-3例7、如图7-1,△ABC中,∠ACB=90°,AC=2,BC=1.点A、C分别在x轴和y轴的正半轴上,当点A在x轴上运动时,点C也随之在y轴上运动.在整个运动过程中,求点B到原点的最大距离.图7-1【解析】如果把OB放在某一个三角形中,这个三角形的另外两条边的大小是确定的,那么根据两边之和大于第三边,可知第三边OB的最大值就是另两边的和.显然△OBC是不符合条件的,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。