欢迎来到天天文库
浏览记录
ID:58401525
大小:3.57 MB
页数:45页
时间:2020-09-07
《全等三角形辅助线证明的几种方法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初中数学辅助线专题(辅助线口诀)辅助线一般作法初中几何常见辅助线作法口诀人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。1、有以线段中点为端点的线段时,
2、常延长加倍此线段,构造全等三角形。例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF一、倍长法证明:廷长ED至M,使DM=DE,连接CM,MF。在△BDE和△CDM中,BD=CD(中点定义)∠1=∠5(对顶角相等)ED=MD(辅助线作法)∴△BDE≌△CDM(SAS)又∵∠1=∠2,∠3=∠4(已知)∠1+∠2+∠3+∠4=180°(平角的定义)∴∠3+∠2=90°即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中ED=MD(辅助线作法)∠EDF=∠FDM(已证)DF=DF(公共边)∴△EDF≌△MDF(SAS)∴EF=MF(
3、全等三角形对应边相等)∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)∴BE+CF>EF在三角形中线时,常廷长加倍中线,构造全等三角形。例如:如图5-1:AD为△ABC的中线,求证:AB+AC>2AD分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去证明:延长AD至E,使DE=AD,连接BE,CE∵AD为△ABC的中线(已知)∴BD=CD(中线定义)在△ACD和△EBD中BD
4、=CD(已证)∠1=∠2(对顶角相等)AD=ED(辅助线作法)∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形对应边相等)∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)∴AB+AC>2AD。(常延长中线加倍,构造全等三角形)练习已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2,求证EF=2AD。二、截长补短法作辅助线要证明两条线段之和等于第三条线段,可以采取“截长补短”法。截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段较短线段。所谓补短,即把两短线段补成一条,再证它与长线段相等。让我
5、们来大显身手吧!例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点求证:AB-AC>PB-PC。要证:AB-AC>PB-PC,想到利用三角形三边关系定理证明。因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC故可在AB上截取AN等于AC,得AB-AC=BN再连接PN,则PC=PN,又在△PNB中,PB-PNPB-PC。思路导航证明:(截长法)在AB上截取AN=AC连接PN在△APN和△APC中AN=AC(辅助线作法)∠1=∠2(已知)AP=AP(公共边)∴△APN≌△APC(SAS)∴PC=PN(全等三角形对应边相
6、等)∵在△BPN中,有PB-PNPM-PC(三角形两边之差小于第三边)∴AB-AC>PB-PC。三平行线法若题设中含有中点,可以试过中点作平行线或中位线,对直角三角形,有时可作出斜边的中线。△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+B
7、P=BQ+AQ。思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路:本题要证明的是AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得△ADO≌△AQO。得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。证明:如图(1),过O作OD∥BC交AB于D,∴∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80
此文档下载收益归作者所有