资源描述:
《高中数学极坐标与参数方程知识汇编及高考题型汇总.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯高中数学极坐标与参数方程知识点汇编及题型汇总【知识汇编】参数方程:直线参数方程:xx0tcos(x0,y0)为直线上的定点,t为直线上任一点(t为参数)yy0tsin(x,y)到定点(x0,y0)的数量;圆锥曲线参数方程:圆的参数方程:xarcos(为参数)(a,b)为圆心,r为半径;ybrsin22椭圆xy1的参数方程是xacos为参数;22()abybsin22xyxasec双曲线2-21的参数方程是(为参数);abybtan22x2
2、pt抛物线y2px的参数方程是(t为参数)y2pt极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x轴正半轴为极轴建立坐标系,点P的极坐标为(,),直角222y坐标为(x,y),则xcos,ysin,xy,tanx。【题型1】参数方程和极坐标基本概念x25cos1.已知曲线C的参数方程为y15sin(为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。1)求曲线c的极坐标方程2)若直线l的极坐标方程为(sinθ+cosθ)=1,求直线l被曲线c截得的弦长。x25cosy15sin解:(1)∵曲线c的参数方程为(α
3、为参数)22∴曲线c的普通方程为(x-2)+(y-1)=5xcosysin将代入并化简得:=4cosθ+2sinθ即曲线c的极坐标方程为=4cosθ+2sinθ(2)∵l的直角坐标方程为x+y-1=02∴圆心c到直线l的距离为d=2=2∴弦长为252=23.1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=22sin(θ+4),曲线C2的极坐标方程为ρsinθ=a(a>0)
4、,射线θ=,θ=+4,θ=-4,θ=2+与曲线C1分别交异于极点O的四点A,B,C,D.(1)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;(2)求|OA|·|OC|+|OB|·|OD|的值.22解:(1)C1:(x1)(y1)2,C2:ya,因为曲线C1关于曲线C2对称,a1,C2:y1
5、OA
6、22sin()(2)4;
7、OB
8、22sin()22cos2
9、OC
10、22sin,3
11、OD
12、22sin()22cos()44
13、OA
14、
15、OC
16、
17、OB
18、
19、OD
20、42【题型2】直线参数方程几何意义的应用1x2t23y2t1
21、.在平面直角坐标系xOy中,直线l的参数方程为2(t为参数),直线l与曲22线C:(y2)x1交于A,B两点.AB(1)求的长;322,(2)在以O为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为4,求点P到线段AB中点M的距离.1x2t,23y2t,解:(1)直线l的参数方程为2(t为参数),2代入曲线C的方程得t4t100.设点A,B对应的参数分别为t1,t2,则t1t24,t1t210,2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯所以
22、AB
23、
24、t1t2
25、214.
26、(2)由极坐标与直角坐标互化公式得点P的直角坐标为(2,2),t1t22所以点P在直线l上,中点M对应参数为2,由参数t的几何意义,所以点P到线段AB中点M的距离
27、PM
28、2.2.已知直线l经过点P(1,1),倾斜角,6(1)写出直线l的参数方程。22(2)设l与圆xy4相交与两点A,B,求点P到A,B两点的距离之积。3解:(1)直线的参数方程为x1tcos,即x1t621y1tsiny1t62322(2)把直线x1t代入xy4得(13t)2(11t)24,t2(31)t202221y1t2t1t22,则点P到A,B两点的距离之积为2
29、x2cosP(1,0)y3sin3.设经过点的直线l交曲线C:(为参数)于A、B两点.(1)写出曲线C的普通方程;(2)当直线l的倾斜角60时,求
30、PA
31、
32、PB
33、与
34、PA
35、
36、PB
37、的值.22xy1解:(1)C:43.1x1t23yt(2)设l:2(t为参数)2联立得:5t4t12021612
38、PA
39、
40、PB
41、
42、t1t2
43、t1t24t1t2
44、PA
45、
46、PB
47、
48、t1t2
49、5,54.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标(3,)为(1,2),点M的极坐标为2,若直线l过点P,且倾斜角为6,圆C以M为圆心
50、,3为半径.(1)求直线l的参数方程和圆C的极坐标方程;(2)设直线A,BPAPBl与圆C相交于两点,求.3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3x1t,21y2t,(t为参