欢迎来到天天文库
浏览记录
ID:58323259
大小:136.68 KB
页数:4页
时间:2020-09-11
《几何距离最短问题.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯距离最短问题专题探究1.如图,四边形ABCD是正方形,△ABE是等边三角形,ADM为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.NE⑴求证:△AMB≌△ENB;M⑵①当M点在何处时,AM+CM的值最小;BC②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31时,求正方形的边AD长.E分析:本题在最短矩离这一问题中,利用了
2、数形结合NM的思想,综合考查学生几何、代数知识的运用能力。整个过程充分显示了学生学习数学新知的一般过程:FBC认知——论证——应用。本题的难点在距离最小。第一小问设计由简单的三角形全等的证明让学生得出边之间的相等关系,这里隐藏着由旋转角60°得出的等边三角形,从而得出BM=MN;第二小问设计的是一个探究过程,让学生综合学习过的基本数学知识进行探索,看学生对“两点之间,线段最短”的掌握,要求学生具备转化能力,建模能力等;第三小问的设计主要是将所探究的结论进行运用,拓展,体现了数形结合的思想理念。整个过程
3、体现了特殊问题中的一般规律,是数学知识和问题解决方法的一种自然回归。是近几年中考压轴题的基本模型。现在我们将一起探索距离最短这一专题。其实这一类归根结底还是“两点之间,线段最短”的应用。我们要紧紧抓住这一点,以题变解题思维不变来应对这一类题型。数学模型:(1)在直线l的异侧有A、B两点,在直线l求点P,使AP+BP最小。(2)在直线l的同侧有A、C两点,在直线l求点P,使AP+CP最小。分析:要解决这个问题,找出点A关于直线l的对称点A,连结AB交直线l于点P,则点P就是到A、B两村庄的距离之和最短的
4、点的位置。理由根据轴对称的性质可知PAPA,所以PAPBPAPBBA如果另外任选一点P1(异于P),连结P1A、P1B、P1A,则有P1AP1A在P1BA中,P1AP1BBAPAPBPAP即P1AP1BPAPB因此,PAPB为最短1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯由此可见,轴对称帮我们找到了符合要求的点的位置。2.(1)如图1,等腰直角三角形ABC的直角边长为2,E是斜边AB的中点,P是AC边上的一动点,则PB+PE的最小值为;0(2)几
5、何拓展:如图2,△ABC中,AB=2,∠BAC=30,若在AC、AB上各取一点M、N使BM+MN的值最小,求这个最小值;22(3)代数应用:求代数式x1(4x)4(0≤x≤4)的最小值.ACEPCBAB图1图2(第24题图)分析:第一步,利用轴对称,很容易找到B关于直线AC的对称点B′,然后连接B′C就可。'''第二步,利用作点B关于AC的对称点B,过B作BN⊥AB于N,交AC于M.此时BM+MN的值最小.第三步,构造图形如图所示D其中:AB=4,AC=1,DB=2,AC=x,CA⊥AB于A,DB⊥A
6、B于B.C22那么PC+PD=x1(4x)4AB22P所求x1(4x)4的最小值就是求PC+PD的最小值.C'E3.如图,AC、BD为正方形ABCD对角线,相交于点O,点D为BC边的中点,连长为2cm,在BD上找点P,使DP+CP之和最AD小。OPB分析:利用轴对称性可知A、C为对称点,连接AD交BD于点PCD2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,连接PC,易知,AP=PC,则PD+PC=AP+PD=AD.在直角三解形ABD中,AB=2cm
7、,BD=1cm,则AD=5cm.思考与举例:1.圆O内点P和圆上哪一点的距离最小,理由是什么。分析:过点P作直径AB,则AP、BP中较短者即为点P到圆的最短距离。理由也是由“两点之间,线段最短”得出的“三角形中,两边之和大于第三边”推出的。2.如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?作法:设a、b的距离为r。①把点B竖直向上平移r个单位得到点B';②连接AB',交a于C;③过C作CDb于D;④连接AC、B
8、D。证明:∵BB'∥CD且BB'=CD,∴四边形BB'CD是平行四边形,∴CB'=BD∴AC+CD+DB=AC+CB'+B'B=AB'+B'B在a上任取一点C',作C'D',连接AC'、D'B,C'B'同理可得AC'+C'D'+D'B=AC'+C'B'+B'B而AC'+C'B'>AB'∴AC+CD+DB最短。本题是研究AC+CD+DB最短时的C、D的取法,而CD是定值,所以问题集中在研究AC+DB最小上。但AC、DB不能衔接,可将BD平移B1C处,则AC
此文档下载收益归作者所有