压弯构件稳的失稳.doc

压弯构件稳的失稳.doc

ID:58230314

大小:2.30 MB

页数:28页

时间:2020-05-07

压弯构件稳的失稳.doc_第1页
压弯构件稳的失稳.doc_第2页
压弯构件稳的失稳.doc_第3页
压弯构件稳的失稳.doc_第4页
压弯构件稳的失稳.doc_第5页
资源描述:

《压弯构件稳的失稳.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第三章压弯构件的失稳轴力偏心作用的构件或同时受轴力和横向荷载作用的构件称为压弯构件。由于压弯构件兼有受压和受弯的功能,又普遍出现在框架结构中,因此又称为梁柱。钢结构中的压弯构件多数是截面至少有一个对称轴,且偏心弯矩作用在对称平面的单向偏心情况。对单向偏心的压弯构件,有可能在弯矩平面内失稳,即发生弯曲失稳;也有可能在弯矩作用平面外失稳,即弯扭失稳。其弯曲失稳为第二类稳定问题,即极值点失稳;其弯扭失稳对理想的无缺陷的压弯构件属于第一类稳定问题,即分支点失稳,但对实际构件则是极值点失稳。对理想的两端简支的双轴对称工形截面压弯构件,在两端作用有轴线压力P和使构件

2、产生同向曲率变形的弯矩M,如果在其侧向有足够的支撑(如图3.1(b)),构件将发生平面内的弯曲失稳,其荷载―挠度曲线如图3.2(a)中曲线a,失稳的极限荷载为Pu,属于极值点失稳。图3.1两端简支理想压弯构件图3.2压弯构件荷载变形曲线如果在侧向没有设置支撑(如图3.1(c)),则构件在荷载未达到平面内极限荷载时,可能发生弯扭失稳,即在弯矩作用平面内产生挠度v,在平面外剪心产生位移u,并绕纵轴产生扭转角(如图3.1(d)),其荷载-变形曲线如图3.2(b)中曲线b,属于分支点失稳,失稳的分荷载为Pyw,,且Pyw

3、扭失稳可能发生在弹性阶段,也可能出现在弹塑性阶段。3.1压弯构件平面内失稳对压弯构件,当弯矩作用平面外有足够多支撑可以避免发生弯扭失稳时,若失稳则只可能发生平面内弯曲失稳。当用弹性理论分析理想压弯构件的荷载挠度关系,可以得到图3.3中的二阶弹性曲线b,它以轴心受压弯构件的分岔点荷载PE处引出的水平线a为渐近线。实际压弯构件存在初始缺陷(残余应力﹑几何缺陷),材料为弹塑性体。如按弹塑性理论分析,荷载挠度曲线将是图中曲线OABC。曲线上A点标志着杆件中点截面边缘开始屈服,对应的荷载为Pe,随后塑性向截面内部发展,构件变形快速增加,形成OAB上升段,构件处于稳

4、定平衡状态;B点为曲线的极值点,对应的荷载Pu为构件在弯矩作用平面内失稳的极限荷载;到达B点以后79,由于弹性区缩小到导致构件抵抗力矩的增加小于外力矩的增加程度,出现下降段BC,构件处于不稳定平衡状态。由失稳全过程可以看出实际压弯构件在弯矩作用平面内的弯曲失稳属于二阶弹塑性分析的极值点失稳,不能用弹性理论和平衡微分方程求解极限荷载Pu,而可用数值积分法通过得出荷载挠度曲线后求得极限荷载。压弯构件平面内弯曲失稳的弹性分析虽然不能求出极限荷载,但它是弹塑性分析的基础,因此有必要先研究压弯构件平面内弹性失稳。图3.3压弯构件荷载挠度曲线3.1.1压弯构件平面内

5、弹性弯曲性能在第二章讨论初始几何缺陷对轴心受压构件稳定性能的影响时,对图2.13所示有偏心的轴心受压杆已作过分析,即当作偏心压弯构件得出了荷载P与构件中点挠度δ之间的关系曲线。从式(2.48)中可以看出,若假设材料是无限弹性体,则当δ→∞时,P→PE,即临界荷载P以欧拉荷载PE为极值。然而实际材料都是有限弹性的,由于压弯构件平面内弯曲失稳时,构件为弹塑性工作状态,因此弹性分析只有理论意义。下面仅讨论两端铰接受轴向压力和平面内横向荷载共同作用的弹性压弯构件的内力与变形性能。1.横向均布荷载作用的压弯构件图3.4(a)所示为在均布荷载q作用下两端铰接的压弯构

6、件。假定材料完全弹性,取图3.4(c)所示隔离体,在距左端x处截面的内力矩,外力矩,平衡方程为令,则(3.1)方程(3.1)的特解可写作,代入方程(3.1),有上式是恒等式,故79c1=q∕(2P),c2=-q∕(2P),c3=-EIq∕P2方程(3.1)对应的齐次线性方程y″+k2y=0的通解可写作y=Asinkχ+Bcoskχ,则方程(3.1)的通解为y=Asinkχ+Bcoskχ+qχ2∕(2P)-qχ∕(2P)-EIq/P2(3.2)由边界条件y(0)=0,y()=0得A=EIq∕P2·tg(κ∕2),B=EIq∕P2则(3.3)构件在处有最大挠

7、度,令,可得=(3.4)式中:是均布荷载作用下简支梁的最大挠度,即当P=0时,由式(3.4)求得的最大挠度。式(3.4)中括号内的值为考虑轴线压力后最大挠度的放大系数。图3.4均布荷载作用的压弯构件将展开成幂级数,有式中则式(3.4)可写成=(3.5)式中是最大挠度的放大系数。构件中点的最大弯矩为79(3.6)式中是均布荷载作用下简支梁跨中的最大弯矩;为等效弯矩系数;为弯矩放大系数,用以考虑轴压力P产生的二阶效应。2.横向集中荷载作用的压弯构件由图3.5(c)知,当0<时,平衡方程为令,则(3.7)通解为引入边界条件,得则通解(3.8)令当时,跨中最大挠

8、度为(3.9)式中是集中荷载Q作用在跨中时简支梁的最大挠度,是有轴压力作用时最大

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。