欢迎来到天天文库
浏览记录
ID:58058995
大小:568.00 KB
页数:49页
时间:2020-09-04
《计算指标权重的方法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、在统计学中用来确定权重的三种方法三种方法:AHP、ANP、熵值法三种方法:AHP、ANP、熵值法其中,AHP、ANP既是一种评价方法,但更常用来计算指标权重。而熵值法则是一种根据指标反映信息可靠程度来确定权重的方法。一、AHP层次分析法(AHP)是美国著名的运筹学家Satty等人在20世纪70年代提出的将一种定性和定量分析相结合的多准则决策方法。这一方法的特点是在对复杂决策问题的本质、影响因素以及内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多目标、多准则或无结构
2、特性的复杂决策问题,提供一种简便的决策方法。具体的说,它是指将决策问题的有关元素分解成目标、准则、方案等层次,用一种标度对人的主观判断进行客观量化,在此基础上进行定性和定量分析的一种决策方法。他把人的思维过程层次化、数量化,并用数学为分析、决策、预报或控制提供定量的依据。它尤其适合于人的定性判断起主要作用的、对决策结果难于直接准确计量的场合。应用层次分析法时,首先要把问题层次化。根据问题的性质和要达到的目标,将问题分解为不同组成因素,并按照因素间的相互关联影响及其隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型
3、。并最终把系统分析归结为最底层,相对于最高层目标的相对重要性权值的确定或相对优劣次序的排序问题。在排序计算中,每一层次的因素相对上一层次某一因素的单排序问题又可简化为一系列成对因素的判断比较。为了将比较判断定量化,层次分析法引入了1-9标度法,并写成判断矩阵形式。形成判断矩阵后,即可通过计算判断矩阵的最大特征值及其对应的特征向量,计算出某一层对于上一层次某一个元素的相对重要性权值。在计算出某一层次相对于上一层次各个因素的单排序权值后,用上一层次因素本身的权值加权综合,即可计算出层次总排序权值。总之,依次由上向下即可计算出最低
4、层因素相对于最高层的相对重要性权值或相对优劣次序的排序值。AHP的模型与步骤假设某一企业经过发展,有一笔利润资金,要企业高层领导决定如何使用。企业领导经过实际调查和员工建议,现有如下方案可供选择:(1)作为奖金发给员工;(2)扩建员工宿舍、食堂等福利设施;(3)办员工进修班;(4)修建图书馆、俱乐部等;(5)引进新技术设备进行企业技术改造。从调动员工工作积极性、提高员工文化技术水平和改善员工的物质文化生活状况来看,这些方案都有其合理因素。如何使得这笔资金更合理的使用,就是企业领导所面临需要分析的问题。(1)构造层次分析结构资
5、金合理使用A调动职工积极性B1提高企业技术水平B2改善职工生活B3C1发奖金C2扩建福利设施C3办职工进修班C4建图书馆等C5引进新设备目标层准则层方案层每一层次中的元素一般不超过9个,因同一层次中包含数目过多的元素会给两两比较判断带来困难。(2)构造判断矩阵判断矩阵的一般形式性质:(1)Cij>0;(2)Cij=1/Cji;(3)Cii=1此时,矩阵为正反矩阵。若对于任意i、j、k,均有Cij*Cjk=Cik,则C为一致矩阵。1-9标度方法1/9i元素比j元素极端不重要91/7i元素比j元素强烈不重要81/5i元素比j元素
6、明显不重要71/3i元素比j元素稍不重要69i元素比j元素极端重要57i元素比j元素强烈重要45i元素比j元素明显重要33i元素比j元素稍重要21i,j两元素同等重要1Cij赋值重要性等级序号注:2,4,6,8和1/2,1/4,1/6,1/8介于其间。对于上述例子,假定企业领导对于资金使用这个问题的态度是:首先是提高企业技术水平,其次是改善员工物质生活,最后是调动员工的工作积极性。则准则层对于目标层的判断矩阵A-B为:AB1B2B3B111/51/3B2513B331/31同样,可得:(3)判断矩阵的一致性检验判断矩阵的一致
7、性,是指专家在判断指标重要性时,各判断之间协调一致,不致出现相互矛盾的结果。出现不一致在多阶判断的条件下,极容易发生,只不过是不同的条件下不一致的程度上有所差别而已。根据矩阵理论可知,如果λ满足:则λ为A的特征值,并且对于所有aii=1,有显然,当矩阵具有完全一致性时,其余特征根均为0;而当矩阵A不具有完全一致性时,则有,其余特征根λ2,λ3,λn有如下关系:上述结论告诉我们,当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,这样就可以用判断矩阵特征根的变化来检验判断的一致性程度。因此,在层次分析法中引入
8、判断矩阵最大特征根以外的其余特征根的负平均值,作为度量判断矩阵偏离一致性的指标,即用:检查决策者思维的一致性。CI值越大,表明判断矩阵偏离完全一致性的程度越大;CI值越小(接近于0),表明判断矩阵的一致性越好。当判断矩阵具有完全一致性时,CI=0;当判断矩阵具有满意一致性时,需引入判断矩阵
此文档下载收益归作者所有