欢迎来到天天文库
浏览记录
ID:57896097
大小:573.00 KB
页数:13页
时间:2020-04-02
《高中数学函数知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高中数学函数知识点总结.8.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)9.求函数的定义域有哪些常见类型?函数定义域求法:l分式中的分母不为零;l偶次方根下的数(或式)大于或等于零;l指数式的底数大于零且不等于一;l对数式的底数大于零且不等于一,真数大于零。l正切函数l余切函数l反三角函数的定义域函数y=arcsinx的定义域是[-1,1] ,值域是,函数y=arccosx的定义域是[-1,1],值域是[0,π],函数y=arctgx的定义域是
2、R,值域是.,函数y=arcctgx的定义域是R,值域是(0,π).当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。10.如何求复合函数的定义域?义域是_____________。复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。11、函数值域的求法131、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例求函数y=的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x[-1,2]的值域。3、判别式
3、法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂6、函数单调性法7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例求函数y=x+的值域。8数形结合法例求函数y=+的值域。13解:原函数可化简得:y=∣x-2∣+∣x+8∣上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当
4、点P在线段AB上时,y=∣x-2∣+∣x+8∣=∣AB∣=10 当点P在线段AB的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:[10,+∞)多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。12.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满
5、分失之交臂15.如何用定义证明函数的单调性?(取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求的正负号或者与1的关系(2)参照图象:①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性;(特例:奇函数)②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)13(3)利用单调函数的性质:①函数f(x)与f(x)+c(c是常数)是同向
6、变化的②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)⑤函数f(x)与在f(x)的同号区间里反向变化。⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α
7、)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。(同增异减)⑦若函数y=f(x)是严格单调的,则其反函数x=f-1(y)也是严格单调的,而且,它们的增减性相同。f(g)g(x)f[g(x)]f(x)+g(x)f(x)*g(x)都是正数增增增增增增减减//减增减//减减增减减∴……)16.如何利用导数判断函数的单调性?13值是()A.0B.1C.2D.3∴
8、a的最大值为3)17.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函
此文档下载收益归作者所有