(flyback transformer design theory)

(flyback transformer design theory)

ID:5785634

大小:1.35 MB

页数:49页

时间:2017-12-24

(flyback transformer design theory)_第1页
(flyback transformer design theory)_第2页
(flyback transformer design theory)_第3页
(flyback transformer design theory)_第4页
(flyback transformer design theory)_第5页
资源描述:

《(flyback transformer design theory)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、(FlybackTransformerDesignTheory)第一节.概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1.电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2.转换效率高,损失小. 3.变压器匝数比值较小. 4.输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1.输出电压中存在较大的纹波,负载调整精度不高,因此输出

2、功率受到限制,通常应用于150W以下. 2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3.变压器有直流电流成份,且同时会工作于CCM/DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节.工作原理在图1所示隔离反驰式转换器(Theisolatedflybackconverter)中,变压器"T"有隔离与扼流之双重作用.因此"T"又称为Transformer-choke.电路的工作原理如下:当开关晶体管Trton时,变压器初级Np有电流Ip,并将能量储存于其中(E

3、=LpIp/2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Troff时,由楞次定律:(e=-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间ton的大小将决定Ip、Vce的幅值: Vcemax=VIN/1-Dmax VIN:输入直流电压;Dmax:最大工作周期 Dmax=ton/T由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax=0.4,以限制Vcemax≦2.2VIN.开关管Tron时的集电极工

4、作电流Ie,也就是原边峰值电流Ip为:Ic=Ip=IL/n.因IL=Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp=NsIs而导出.Ip亦可用下列方法表示:Ic=Ip=2Po/(η*VIN*Dmax)η:转换器的效率公式导出如下:输出功率:Po=LIp2η/2T输入电压:VIN=Ldi/dt设di=Ip,且1/dt=f/Dmax,则:VIN=LIpf/Dmax或Lp=VIN*Dmax/Ipf则Po又可表示为:Po=ηVINfDmaxIp2/2fIp=1/2ηVINDmaxIp∴Ip=2Po/ηVINDmax 上列公式中:VIN:最

5、小直流输入电压(V)Dmax:最大导通占空比Lp:变压器初级电感(mH)Ip:变压器原边峰值电流(A)f:转换频率(KHZ)图2反激式转换器波形图由上述理论可知,转换器的占空比与变压器的匝数比受限于开关晶体管耐压与最大集电极电流,而此两项是导致开关晶体成本上升的关键因素,因此设计时需综合考量做取舍. 反激式变换器一般工作于两种工作方式: 1.电感电流不连续模式DCM(DiscontinuousInductorCurrentMode)或称"完全能量转换":ton时储存在变压器中的所有能量在反激周期(toff)中都转移到输出端. 2.电感电流连续模式CCM(ContinuousInduc

6、torCurrentMode)或称"不完全能量转换":储存在变压器中的一部分能量在toff末保留到下一个ton周期的开始. DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.实际上,当变换器输入电压VIN在一个较大范围内发生变化,或是负载电流IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM/CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM/CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传

7、递函数"右半平面零点"引起的不稳定.DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.图3DCM/CCM原副边电流波形图实际上,当变换器输入电压VIN在一个较大范围内发生变化,或是负载电流IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM/CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM/CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在CCM时无消除电路固有的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。