变频技术的原理与功能应用

ID:5782576

大小:38.00 KB

页数:11页

时间:2017-12-24

变频技术的原理与功能应用_第1页
变频技术的原理与功能应用_第2页
变频技术的原理与功能应用_第3页
变频技术的原理与功能应用_第4页
变频技术的原理与功能应用_第5页
资源描述:

《变频技术的原理与功能应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、变频技术的原理与功能应用变频技术的原理与功能应用.txt6宽容润滑了彼此的关系,消除了彼此的隔阂,扫清了彼此的顾忌,增进了彼此的了解。变频器基础知识交流LTTL13142008-09-01提纲*变频器的发展和主要相关技术*变频器的主要构成及其工作原理*变频器各种功能和应用*变频器的发展和主要相关技术*电气传动系统概述*以交流(直流)电动机为动力拖动各种生产机械的系统我们称之为交流(直流)电气传动系统,也称交流(直流)电气拖动系统。大致构成*变频器的发展和主要相关技术*变频器的工作原理我们知道,交流电动机的异步转速表达式位:n=60f(1-s)/p(1)其中 n——

2、—异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。*由公式(1)可知,电动机的输出转速与输入的电源频率、转差率、电机的极对数有关系,因而交流电动机的直接调速方式主要有变极调速(调整P)、转子串电阻调速或串级调速或内反馈电机(调整s)和变频调速(调整f)等。而我们现在运用最广泛的就是变频调速,由转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。*变频器的发展和主要相关技术

3、*变频器的发展史*变频器相关技术(即发展基础)*电力电子技术半导体功率器件从GTO(门极可关断晶体管)、GTR(大功率晶体管)、BJT(双及型晶体管)、MOSFET(金属氧化硅场效应管)到今天的IGBT(绝缘栅双极型晶体管)的实用化,使得开关高频化的PWM技术成为可能。*微处理器技术随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(DigitalSignalProcessor,DSP)、专用集成电路(ApplicationSpec

4、ificIntegratedCircuit,ASIC)等。现在又出现了多个CPU协同工作:管理,核心,键盘,上位机等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成全数字化控制系统达到了较高的性能价格比。*控制理论的不断进步应用矢量控制技术、直接转矩控制技术及现代控制理论。*网络技术局域网,互联网,远程监控;ProfibusBUS,Interbus-S,DeviceNET,I/OInterface*变频器控制方式的发展*V/

5、F控制及U/f=C的其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。*电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼

6、近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。*矢量控制2)变频器的矢量控制模式仿照直流电动机的控制特点,对于调节频率的给定信号,分解成和直流电动机具有相同特点的磁场电流信号i*M和转矩电流信号i*T,并且假想地看作是两个旋转着的直流磁场的信号。当给定信号改变时,也和直流电动机一样,只改

7、变其中一个信号,从而使异步电动机的调速控制具有和直流电动机类似的特点。对于控制电路分解出的控制信号i*M和i*T,根据电动机的参数进行一系列的等效变换,得到三相逆变桥的控制信号i*A、i*B和i*C,对三相逆变桥进行控制,如图所示。从而得到与直流电动机类似的硬机械特性,提高了低频时的带负载能力。3)矢量控制的主要优点*低频转矩大:即使运行在1Hz(或0.5Hz)时,也能产生足够大的转矩,且不会产生在V/F控制方式中容易遇到的磁路饱和现象。*机械特性好:在整个频率调节范围内,都具有较硬的机械特性,所有机械特性基本上都是平行的。*动态响应好:尤其是有转速反馈的矢量控制

8、方式,其动

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《变频技术的原理与功能应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、变频技术的原理与功能应用变频技术的原理与功能应用.txt6宽容润滑了彼此的关系,消除了彼此的隔阂,扫清了彼此的顾忌,增进了彼此的了解。变频器基础知识交流LTTL13142008-09-01提纲*变频器的发展和主要相关技术*变频器的主要构成及其工作原理*变频器各种功能和应用*变频器的发展和主要相关技术*电气传动系统概述*以交流(直流)电动机为动力拖动各种生产机械的系统我们称之为交流(直流)电气传动系统,也称交流(直流)电气拖动系统。大致构成*变频器的发展和主要相关技术*变频器的工作原理我们知道,交流电动机的异步转速表达式位:n=60f(1-s)/p(1)其中 n——

2、—异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。*由公式(1)可知,电动机的输出转速与输入的电源频率、转差率、电机的极对数有关系,因而交流电动机的直接调速方式主要有变极调速(调整P)、转子串电阻调速或串级调速或内反馈电机(调整s)和变频调速(调整f)等。而我们现在运用最广泛的就是变频调速,由转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。*变频器的发展和主要相关技术

3、*变频器的发展史*变频器相关技术(即发展基础)*电力电子技术半导体功率器件从GTO(门极可关断晶体管)、GTR(大功率晶体管)、BJT(双及型晶体管)、MOSFET(金属氧化硅场效应管)到今天的IGBT(绝缘栅双极型晶体管)的实用化,使得开关高频化的PWM技术成为可能。*微处理器技术随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(DigitalSignalProcessor,DSP)、专用集成电路(ApplicationSpec

4、ificIntegratedCircuit,ASIC)等。现在又出现了多个CPU协同工作:管理,核心,键盘,上位机等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成全数字化控制系统达到了较高的性能价格比。*控制理论的不断进步应用矢量控制技术、直接转矩控制技术及现代控制理论。*网络技术局域网,互联网,远程监控;ProfibusBUS,Interbus-S,DeviceNET,I/OInterface*变频器控制方式的发展*V/

5、F控制及U/f=C的其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。*电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼

6、近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。*矢量控制2)变频器的矢量控制模式仿照直流电动机的控制特点,对于调节频率的给定信号,分解成和直流电动机具有相同特点的磁场电流信号i*M和转矩电流信号i*T,并且假想地看作是两个旋转着的直流磁场的信号。当给定信号改变时,也和直流电动机一样,只改

7、变其中一个信号,从而使异步电动机的调速控制具有和直流电动机类似的特点。对于控制电路分解出的控制信号i*M和i*T,根据电动机的参数进行一系列的等效变换,得到三相逆变桥的控制信号i*A、i*B和i*C,对三相逆变桥进行控制,如图所示。从而得到与直流电动机类似的硬机械特性,提高了低频时的带负载能力。3)矢量控制的主要优点*低频转矩大:即使运行在1Hz(或0.5Hz)时,也能产生足够大的转矩,且不会产生在V/F控制方式中容易遇到的磁路饱和现象。*机械特性好:在整个频率调节范围内,都具有较硬的机械特性,所有机械特性基本上都是平行的。*动态响应好:尤其是有转速反馈的矢量控制

8、方式,其动

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭