资源描述:
《《等差数列》教案.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、等差数列[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。[教学重难点]感1.教
2、学重点:等差数列的概念的理解,通项公式的推导及应用。2.教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。[教学过程]一.课题引入创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:1682,1758,1834,1910,1986,()你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下
3、表估计一下珠穆朗玛峰峰顶的温度。距地面的高度(km)温度(℃)12338322645201468……思考:依据前面的规律,填写(3)、(4):(3)1,4,7,10,(),16,…(4)2,0,-2,-4,-6,(),…它们共同的规律是?从第二项起,每一项与前一项的差等于同一个常数。我们把有这一特点的数列叫做等差数列。二、新课探究(一)等差数列的定义1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。(1)
4、定义中的关健词有哪些?(2)公差d是哪两个数的差?2、等差数列定义的数学表达式:试一试:它们是等差数列吗?(1)1,3,5,7,9,2,4,6,8,10…(2)5,5,5,5,5,5,…(3)-1,-3,-5,-7,-9,…(4)数列{an},若an+1-an=33、等差中顶定义在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:(1)、2,(),4(2)、-12,(),0(3)a,(),b如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项。(二)等差数列的通
5、项公式探究1:等差数列的通项公式(求法一)如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?根据等差数列的定义可得:,,,…。所以:,,,……由此得,因此等差数列的通项公式就是:,探究2:等差数列的通项公式(求法二)根据等差数列的定义可得:……将以上-1个式子相加得等差数列的通项公式就是:,三、应用与探索例1、(1)求等差数列8,5,2,…,的第20项。(2)等差数列-5,-9,-13,…,的第几项是–401?(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n
6、,使得成立,实质上是要求方程的正整数解。例2、在等差数列中,已知=10,=31,求首项与公差d.解:由,得。在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。巩固练习1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。A.1B.-1C.-2D.2110332.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结1.等差数列的通项公
7、式:公差;2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;3.判断一个数列是否为等差数列只需看是否为常数即可;4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.五、作业:1、必做题:课本第40页习题2.2第1,3,5题2、选做题:如何以最快的速度求:1+2+3+···+100=请同学们预习下一节:等差数列的前N项和