全等三角形问题中常见的辅助线的作法.doc

全等三角形问题中常见的辅助线的作法.doc

ID:57804636

大小:1.05 MB

页数:20页

时间:2020-03-29

全等三角形问题中常见的辅助线的作法.doc_第1页
全等三角形问题中常见的辅助线的作法.doc_第2页
全等三角形问题中常见的辅助线的作法.doc_第3页
全等三角形问题中常见的辅助线的作法.doc_第4页
全等三角形问题中常见的辅助线的作法.doc_第5页
资源描述:

《全等三角形问题中常见的辅助线的作法.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、全等三角形问题中常见的辅助线的作法(有答案)一、倍长中线(线段)造全等1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.-20-二、截长补短1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求

2、证;AB=AD+BC。3、如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,求证:5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC-20-三、平移变换例1AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为,△EBC周长记为.求证>.例2如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.四、借

3、助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.-20-五、旋转例1正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.例2D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。(1)当绕点D转动时,求证DE=DF。(2)若AB

4、=2,求四边形DECF的面积。例3如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为;-20-参考答案与提示一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.解:延长AD至E使AE=2AD,连BE,由三角形性质知AB-BE<2AD

5、CF与EF的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知EG=EF在△BEG中,由三角形性质知EG

6、∠ADC+∠ACD=∠ADC+∠GDC=∠ADG故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE应用:1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰Rt绕点A沿逆时针方向旋转(0<<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.解:(1),;证明:延长AM到G,使,连B

7、G,则ABGC是平行四边形GCHABDMNE∴,又∵∴再证:∴,延长MN交DE于H∵∴∴-20-(2)结论仍然成立.证明:如图,延长CA至F,使,FA交DE于点P,并连接BF∵,∴FCPABDMNE∵在和中∴(SAS)∴,∴∴又∵,∴,且∴,二、截长补短1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC解:(截长法)在AB上取中点F,连FD△ADB是等腰三角形,F是底AB中点,由三线合一知DF⊥AB,故∠AFD=90°△ADF≌△ADC(SAS)∠ACD=∠AFD=90°即:CD⊥AC-20-2

8、、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC解:(截长法)在AB上取点F,使AF=AD,连FE△ADE≌△AFE(SAS)∠ADE=∠AFE,∠ADE+∠BCE=180°∠AFE+∠BFE=180°故∠ECB=∠EFB△FBE≌△CBE(AAS)故有BF=BC从而;AB=AD+BC3、如图,已知在△ABC内,,,P,Q分别在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。