欢迎来到天天文库
浏览记录
ID:57802778
大小:809.50 KB
页数:16页
时间:2020-03-29
《专题2.3-以二次函数与直角三角形问题为背景的解答题(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第三关以二次函数与直角三角形问题为背景的解答题【总体点评】二次函数在全国中考数中常常作为压轴题,同时在省级,国家级数竞赛中也有二次函数大题,很多生在有限的时间内都不能很好完成。由于在高中和大中很多数知识都与函数知识或函数的思想有关,生在初中阶段函数知识和函数思维方法得好否,直接关系到未来数的习。直角三角形的有关知识和二次函数都是初中代数中的重点内容,这两块内容的综合是初中数最突出的综合内容,因此这类问题就成为中考命题中比较受关注的热点问题.【解题思路】近几年的中考中,二次函数图形中存在性问题始终是热点和难点。考题内容涉及到分类讨论、数形结合、化归等数思想,对生思维能力、模型思想等数素养
2、要求很高,所以生的失分现象比较普遍和突出。解这类问题有什么规律可循?所应用的知识点:1.抛物线与直线交点坐标;2.抛物线与直线的解析式;3.勾股定理;4.三角形的相似的性质和判定;5.两直线垂直的条件;运用的数思想:1.函数与方程;2.数形结合;3.分类讨论;4.等价转化;解决二次函数中直角三角形存在性问题采用方法:1.找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2.以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时
3、,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【典型例题】【例1】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.【答案】(1),;(2)M(-1,2);(3)满足条件的点P共有四个,分别为(-1,-2),(-
4、1,4),(-1,),(-1,).【解析】试题分析:(1)已知抛物线y=ax2+bx+c的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,可得方程组,解方程组可求得a、b、c的值,即可得抛物线的解析式;根据抛物线的对称性和点A的坐标(1,0)可求得B点的坐标(-3,0),用待定系数法可求得直线BC的解析式;(2)使MA+MC最小的点M应为直线BC与对称轴x=-1的交点,把x=-1代入直线BC的解析式求得y的值,即可得点M的坐标;(3)分①B为直角顶点,②C为直角顶点,③P为直角顶点三种情况分别求点P的坐标.试题解析:(1)依题意,得解之,得∴抛物线解析式为.∵对称轴为x=-
5、1,且抛物线经过A(1,0),∴B(-3,0).把B(-3,0)、C(0,3)分别直线y=mx+n,得解之,得∴直线BC的解析式为.(2)∵MA=MB,∴MA+MC=MB+MC.∴使MA+MC最小的点M应为直线BC与对称轴x=-1的交点.设直线BC与对称轴x=-1的交点为M,把x=-1代入直线,得y=2.∴M(-1,2)(3)设P(-1,t),结合B(-3,0),C(0,3),得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10.①若B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10.解之,得t=-2.②若C
6、为直角顶点,则BC2+PC2=PB2,即18+t2-6t+10=4+t2.解之,得t=4.③若P为直角顶点,则PB2+PC2=BC2,即4+t2+t2-6t+10=18.解之,得t1=,t2=.综上所述,满足条件的点P共有四个,分别为(-1,-2),(-1,4),(-1,),(-1,).考点:二次函数综合题.【名师点睛】本题是二次函数的综合题,考查的知识点有平面直角坐标系上点的特征、直角三角形的知识,题目综合性较强,有一定的难度;解题时要注意应用数形结合思想、分类讨论思想及方程思想,会综合运用所的知识灵活的解题.【例2】如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,
7、且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.【答案】(1)(2)见解析;(3)(,).【解析】试题分析:(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和
此文档下载收益归作者所有