初三----图形证明训练30道--附详细答案.doc

初三----图形证明训练30道--附详细答案.doc

ID:57787867

大小:1.87 MB

页数:82页

时间:2020-09-02

初三----图形证明训练30道--附详细答案.doc_第1页
初三----图形证明训练30道--附详细答案.doc_第2页
初三----图形证明训练30道--附详细答案.doc_第3页
初三----图形证明训练30道--附详细答案.doc_第4页
初三----图形证明训练30道--附详细答案.doc_第5页
资源描述:

《初三----图形证明训练30道--附详细答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、图形旋转证明训练30道(1)一.解答题(共30小题)1.(2015•诸城市二模)如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设

2、为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长. 2.(2015•唐山二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,

3、F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动(1)①当t=3秒时,点P走过的路径长为      ;②当t=      秒时,点P与点E重合;③当t=      秒时,PE∥AB;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直

4、接写出t的值. 3.(2014•重庆)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于

5、点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由. 4.(2014•天津)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可). 5.

6、(2014•重庆)如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.(1)求线段AC的长;(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等

7、边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由. 6.(2012•本溪)已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的

8、边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为      ;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明. 7.(2012•余姚市校级自主招生)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。