求数列通项公式和前N项和的方法.doc

求数列通项公式和前N项和的方法.doc

ID:57684957

大小:911.50 KB

页数:18页

时间:2020-09-01

求数列通项公式和前N项和的方法.doc_第1页
求数列通项公式和前N项和的方法.doc_第2页
求数列通项公式和前N项和的方法.doc_第3页
求数列通项公式和前N项和的方法.doc_第4页
求数列通项公式和前N项和的方法.doc_第5页
资源描述:

《求数列通项公式和前N项和的方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.求数列前N项和的方法1.公式法等差数列前n项和:特别的,当前n项的个数为奇数时,,即前n项和为中间项乘以项数。这个公式在很多时候可以简化运算。等比数列前n项和:q=1时,,特别要注意对公比的讨论。其他公式:1、2、3、[例1]已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)===1-[例2]设Sn=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得,(利用常用公式)∴=..==∴当,即n=8时,1.错位相减法这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主

2、要用于求数列{an· bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.[例3]求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设……………………….②(设制错位)①-②得(错位相减)再利用等比数列的求和公式得:∴[例4]求数列前n项的和.解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设…………………………………①………………………………②(设制错位)①-②得(错位相减)..∴练习:求:Sn=1+5x+9x

3、2+······+(4n-3)xn-1解:Sn=1+5x+9x2+······+(4n-3)xn-1①①两边同乘以x,得xSn=x+5x2+9x3+······+(4n-3)xn②①-②得,(1-x)Sn=1+4(x+x2+x3+······+)-(4n-3)xn当x=1时,Sn=1+5+9+······+(4n-3)=2n2-n当x≠1时,Sn=11-x[4x(1-xn)1-x+1-(4n-3)xn]1.反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把

4、它与原数列相加,就可以得到n个.[例5]求的值解:设………….①将①式右边反序得…………..②(反序)又因为①+②得(反序相加)=89∴S=44.52.分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6]求数列的前n项和:,…解:设将其每一项拆开再重新组合得..(分组)当a=1时,=(分组求和)当时,=[例7]求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得Sn=(分组)=

5、=(分组求和)=练习:求数列的前n项和。解:1.裂项法求和..这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9]求数列的前n项和.解:设(裂项)则(裂项求和)==[例10]在数列{an}中,,又,求数列{bn}的前n项的和.解: ∵∴(裂项)∴数列{bn}的前n项和(裂项求和)==..[例11]求证:解:设∴(裂项)∴(裂项求和)====∴ 原等式成立1

6、.合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°∵(找特殊性质项)∴Sn=(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例

7、13]数列{an}:,求S2002.解:设S2002=由可得……..∵(找特殊性质项)∴S2002=(合并求和)====5[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)和对数的运算性质得(合并求和)===101.利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(找通项及特征)..∴=(分组求和)===以上一个7种方法虽然各有其特点,但总的原则是要

8、善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项二、累加、累乘法1、累加法适用于:若,则两边分别相加得例1已知数列满足,求数列的通项公式。解:由得则..所以数列的通项公式为。例2已知数列满足,求数列的通项公式。解法一:由得则所以解法二:两边除以,得,则,故

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。