含参数的一元二次不等式的解法(例题精讲).doc

含参数的一元二次不等式的解法(例题精讲).doc

ID:57680545

大小:194.50 KB

页数:3页

时间:2020-08-31

含参数的一元二次不等式的解法(例题精讲).doc_第1页
含参数的一元二次不等式的解法(例题精讲).doc_第2页
含参数的一元二次不等式的解法(例题精讲).doc_第3页
资源描述:

《含参数的一元二次不等式的解法(例题精讲).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按项的系数的符号分类,即;例1解不等式:分析:本题二次项系数含有参数,,故只需对二次项系数进行分类讨论。解:∵解得方程两根∴当时,解集为当时,不等式为,解集为当时,解集为例2解不等式分析因为,,所以我们只要讨论二次项系数的正负。解当时,解集为;当时,解集为二、按判别式的符号分类,即;例3解不等式分析本题中由于的系数大于0,故只需考虑与根的情况。解:∵∴当即时,解集为;当即Δ=0时,解集为;当或即,此时两根分别为,,显然,∴不等式的解集为例4解不等式解

2、因,所以当,即时,解集为;当,即时,解集为;当,即时,解集为R。三、按方程的根的大小来分类,即;例5解不等式分析:此不等式可以分解为:,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:,令,可得:,∴当或时,,故原不等式的解集为;当或时,,可得其解集为;当或时,,解集为。例6解不等式,分析此不等式,又不等式可分解为,故只需比较两根与的大小.解原不等式可化为:,对应方程的两根为,当时,即,解集为;当时,即,解集为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。