高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf

高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf

ID:57597961

大小:500.31 KB

页数:7页

时间:2020-08-28

高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf_第1页
高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf_第2页
高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf_第3页
高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf_第4页
高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf_第5页
资源描述:

《高中数学第一章导数及其应用1.4导数在实际生活中的应用学案苏教版选修2.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、1.4导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实重点:用导数解决实际生活中的最优际问题,并体会导数在解决实际问题化问题.中的作用.难点:将实际问题转化为数学问题.3.提高将实际问题转化为数学问题的能力.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使

2、其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S=42=16(m2).最大27预习交流2:提示:设半径为r,则高h=,r22754π∴S=2πr·h+πr2=2πr·+πr2=+πr2,rr254π令S′=2πr-=0,得r=3,r2∴当r=3时,用料最省.预习交流3:提示:(1)在求实

3、际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2

4、)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从

5、A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平购地总费用均购地费用=建筑总面积1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合

6、实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利

7、润=(每辆车的出厂价-每辆车的投入成本)×年销售量.(1)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内?5(2)若年销售量关于x的函数为y=3240-x2+2x+,则当x为何值时,本年度的年3利润最大?最大利润是多少?思路分析:根据题意建立目标函数关系式,利用导数求解.某工厂生产某种产品,已知该产品的月产量x(吨)与每吨产品的价格P(元/

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。