欢迎来到天天文库
浏览记录
ID:57580415
大小:117.38 KB
页数:5页
时间:2020-08-27
《磁场对运动电荷的作用.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、磁场对运动电荷的作用对点训练:对洛伦兹力的理解1.(多选)(2017·广东六校联考)有关电荷所受电场力和磁场力的说法中,正确的是( )A.电荷在磁场中一定受磁场力的作用B.电荷在电场中一定受电场力的作用C.电荷受电场力的方向与该处的电场方向一致D.电荷若受磁场力,则受力方向与该处的磁场方向垂直解析:选BD 带电粒子受洛伦兹力的条件:运动电荷且速度方向与磁场方向不平行,故电荷在磁场中不一定受磁场力作用,A项错误;电场具有对放入其中的电荷有力的作用的性质,B项正确;正电荷受力方向与电场方向一致,而负电荷受力方向与电场方向相反,C项错误;磁场对运动电荷的作用力垂直磁场方向且垂直速度方向,D项正
2、确。2.(多选)(2017·南昌调研)空间有一磁感应强度为B的水平匀强磁场,质量为m、电荷量为q的质点以垂直于磁场方向的速度v0水平进入该磁场,在飞出磁场时高度下降了h,重力加速度为g,则下列说法正确的是( )A.带电质点进入磁场时所受洛伦兹力可能向上B.带电质点进入磁场时所受洛伦兹力一定向下C.带电质点飞出磁场时速度的大小为v0D.带电质点飞出磁场时速度的大小为解析:选AD 因为磁场为水平方向,带电质点水平且垂直于磁场方向飞入该磁场,若磁感应强度方向为垂直纸面向里,利用左手定则,可以知道若质点带正电,从左向右飞入瞬间洛伦兹力方向向上,若质点带负电,飞入瞬间洛伦兹力方向向下,A对,B错;
3、利用动能定理mgh=mv2-mv02,得v=,C错,D对。对点训练:带电粒子在匀强磁场中的运动3.如图所示,匀强磁场中有一电荷量为q的正离子,由a点沿半圆轨道运动,当它运动到b点时,突然吸收了附近若干电子,接着沿另一半圆轨道运动到c点,已知a、b、c在同一直线上,且ac=ab,电子的电荷量为e,电子质量可忽略不计,则该离子吸收的电子个数为( )A. B.C.D.解析:选D 正离子由a到b的过程,轨迹半径r1=,此过程有qvB=m,正离子在b点附近吸收n个电子,因电子质量不计,所以正离子的速度不变,电荷量变为q-ne,正离子从b到c的过程中,轨迹半径r2==ab,且(q
4、-ne)vB=m,解得n=,D正确。4.(2017·深圳二调)一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动。则下列能表示运动周期T与半径R之间的关系图像的是( )解析:选D 带电粒子在匀强磁场中做匀速圆周运动时,qvB=m?R=,由圆周运动规律,T==,可见粒子运动周期与半径无关,故D项正确。对点训练:带电粒子在匀强磁场中的多解问题5.(2017·南昌模拟)如图所示,在x>0,y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B。现有一质量为m、电荷量为q的带正电粒子,从x轴上的某点P沿着与x轴正方向成30°角的方向射入磁场。不计重
5、力的影响,则下列有关说法中正确的是( )A.只要粒子的速率合适,粒子就可能通过坐标原点B.粒子在磁场中运动所经历的时间一定为C.粒子在磁场中运动所经历的时间可能为D.粒子在磁场中运动所经历的时间可能为解析:选C 带正电的粒子从P点沿与x轴正方向成30°角的方向射入磁场中,则圆心在过P点与速度方向垂直的直线上,如图所示,粒子在磁场中要想到达O点,转过的圆心角肯定大于180°,因磁场有边界,故粒子不可能通过坐标原点,故选项A错误;由于P点的位置不确定,所以粒子在磁场中运动的圆弧对应的圆心角也不同,最大的圆心角是圆弧与y轴相切时即300°,运动时间为T,而最小的圆心角为P点在坐标原点即120°
6、,运动时间为T,而T=,故粒子在磁场中运动所经历的时间最长为,最短为,选项C正确,B、D错误。6.(多选)(2017·湖北六校调考)如图所示,xOy平面的一、二、三象限内存在垂直纸面向外,磁感应强度B=1T的匀强磁场,ON为处于y轴负方向的弹性绝缘薄挡板,长度为9m,M点为x轴正方向上一点,OM=3m。现有一个比荷大小为=1.0C/kg可视为质点带正电的小球(重力不计)从挡板下端N处小孔以不同的速度向x轴负方向射入磁场,若与挡板相碰就以原速率弹回,且碰撞时间不计,碰撞时电荷量不变,小球最后都能经过M点,则小球射入的速度大小可能是( )A.3m/sB.3.75m/sC.4m/sD.5m/s
7、解析:选ABD 因为小球通过y轴的速度方向一定是+x方向,故带电小球圆周运动轨迹半径最小值为3m,即Rmin=,解得vmin=3m/s;经验证,带电小球以3m/s速度进入磁场,与ON碰撞一次,再经四分之三圆周经过M点,如图1所示,A项正确;当带电小球与ON不碰撞,直接经过M点,如图2所示,小球速度沿-x方向射入磁场,则圆心一定在y轴上,做出MN的垂直平分线,交于y轴的点即得圆心位置,由几何关系解得轨迹半径最大值Rmax=
此文档下载收益归作者所有