整式的乘除因式分解计算题精选1(含答案)剖析.pdf

整式的乘除因式分解计算题精选1(含答案)剖析.pdf

ID:57565138

大小:372.47 KB

页数:11页

时间:2020-08-27

整式的乘除因式分解计算题精选1(含答案)剖析.pdf_第1页
整式的乘除因式分解计算题精选1(含答案)剖析.pdf_第2页
整式的乘除因式分解计算题精选1(含答案)剖析.pdf_第3页
整式的乘除因式分解计算题精选1(含答案)剖析.pdf_第4页
整式的乘除因式分解计算题精选1(含答案)剖析.pdf_第5页
资源描述:

《整式的乘除因式分解计算题精选1(含答案)剖析.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、整式的乘除因式分解习题精选一.解答题(共12小题)1.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2③④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2⑧.3.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).(2)(x﹣4y)(2x+3y)﹣(x+2y)(x

2、﹣y).(3)[(﹣2x2y)2]3•3xy4.(4)(m﹣n)(m+n)+(m+n)2﹣2m2.精品文档4.计算:(1)(x2)8•x4÷x10﹣2x5•(x3)2÷x.(2)3a3b2÷a2+b•(a2b﹣3ab﹣5a2b).(3)(x﹣3)(x+3)﹣(x+1)(x+3).(4)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy).5.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3xn

3、+1﹣6xn+3xn﹣1⑩x2﹣y2+2y﹣1;4a2﹣b2﹣4a+1;4(x﹣y)2﹣4x+4y+1;3ax2﹣6ax﹣9a;x4﹣6x2﹣27;(a2﹣2a)2﹣2(a2﹣2a)﹣3.2欢迎下载。精品文档6.因式分解:(1)4x3﹣4x2y+xy2.(2)a2(a﹣1)﹣4(1﹣a)2.7.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣

4、y)][(﹣x﹣y)(﹣x+y)+2y2]的值.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.11.先化简,再求值:(1)(x+2y)(2x+y)﹣(x+2y)(2y﹣x),其中,.3欢迎下载。精品文档(2)若x﹣y=1,xy=2,求x3y﹣2x2y2+xy3.12.解方程或不等式:(1)(x+3)2+2(x﹣1)2=3x2+13.(2)(2x﹣5)2+(3x+1)2>13(x2﹣10).整式的乘除因式分解习题精选参考答案与试题解析一.解答题(共12小题)1.计算:①;②[(﹣y5

5、)2]3÷[(﹣y)3]5•y2③;④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)4欢迎下载。精品文档考点:整式的混合运算.专题:计算题.分析:①原式先计算乘方运算,再计算乘除运算即可得到结果;②原式利用幂的乘方与积的乘方运算法则计算,即可得到结果;③原式利用多项式除以单项式法则计算即可得到结果;④余数利用同底数幂的乘除法则计算即可得到结果.解答:解:①原式=5a2b÷(﹣ab)•(4a2b4)=﹣60a3b4;②原式=y30÷(﹣y)15•y2=﹣y17;③原式=a2b﹣ab2﹣;④原式=4(a﹣b)10.点评:此题考查了整式的混合运算,熟练掌握运

6、算法则是解本题的关键.2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2⑧.考点:整式的混合运算.专题:计算题.分析:①原式利用完全平方公式展开,去括号合并即可得到结果;②原式第一项利用平方差公式计算,第二项利用完全平方公式展开,去括号合并即可得到结果;③原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;④原式利用平方差公式化简,再利用

7、完全平方公式展开即可得到结果;⑤原式利用完全平方公式展开,即可得到结果;⑥原式中括号中利用完全平方公式化简,去括号合并后利用多项式除以单项式法则计算即可得到结果;⑦原式逆用积的乘方运算法则变形,计算即可得到结果;⑧原式利用平方差公式计算即可得到结果.解答:解:①原式=4x2﹣12xy+9y2﹣8y2=4x2﹣12xy+y2;②原式=m2﹣9n2﹣m2+6mn﹣9n2=6mn﹣18n2;③原式=(a﹣b)2﹣c2=a2﹣2ab+b2﹣c2;④原式=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9;5欢迎下载。精品文档⑤原式=(a﹣2b)2+2c(a﹣2b)+c2=a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。