欢迎来到天天文库
浏览记录
ID:57526760
大小:374.50 KB
页数:9页
时间:2020-08-26
《2020高三一轮总复习文科数学课时跟踪检测:7-5直线、平面垂直的判定及性质 Word版含解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、[课时跟踪检测][基础达标]1.(2017届青岛模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:对于C项,由b⊥β,α∥β可得b⊥α,又a⊂α,得a⊥b,故选C.答案:C2.(2016年浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析:∵α∩β=l,∴l⊂β.∴n⊥β,∴n⊥l.答案:C3.(201
2、7届南昌模拟)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析:由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l.答案:D4.(2018届遵义模拟)设l,m,n表示三条直线,α,β,γ表示三个平面,则下列命题中不成立的是()A.若m⊂α,n⊄α,m∥n,则n∥αB.若α⊥
3、γ,α∥β,则β⊥γC.若m⊂β,n是l在β内的射影,若m⊥l,则m⊥nD.若α⊥β,α∩β=m,l⊥m,则l⊥β解析:在A中由线面平行的判定定理得n∥α;在B中由面面垂直的判定得β⊥γ;在C中由线面垂直得m⊥n;在D中,l与β相交、平行或l⊂β,故D错误.答案:D5.(2017年全国卷Ⅲ)在正方体ABCD-ABCD中,E为棱CD的中点,1111则()A.AE⊥DCB.AE⊥BD111C.AE⊥BCD.AE⊥AC111解析:连BC,BC,AD,由题意得BC⊥BC,11111∵AB⊥平面BBCC,且BC⊂平面BBC
4、C,∴AB⊥BC.1111111111∵AB∩BC=B,∴BC⊥平面ADCB,1111111∵AE⊂平面ADCB,111∴AE⊥BC.故选C.11答案:C6.(2017届安徽合肥一模)如图,已知四边形ABCD为正方形,PD⊥平面ABCD,且PD=AD,则下列命题中错误的是()A.过BD且与PC平行的平面交PA于M点,则M为PA的中点B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点C.过AD且与PC垂直的平面交PC于H点,则H为PC的中点D.过P,B,C的平面与平面PAD的交线为直线l,则l∥AD解析:设
5、AC∩BD=O,因为四边形ABCD是正方形,所以O是AC的中点,因为过BD且与PC平行的平面交PA于点M,所以OM∥PC,所以M是PA的中点,故A正确;设N为PB的中点,连接AN.因为PA与AB不一定相等,所以AN与PB不一定垂直,所以过AC且与PB垂直的平面交PB于N点,则N不一定是PB中点,故B项错误;因为四边形ABCD为正方形,PD⊥平面ABCD且PD=AB,所以PA=AC,PD=DC,所以过AD且与PC垂直的平面交PC于点H,则H为PC的中点,故C正确;因为AD∥BC,所以BC∥平面PAD.又平面PAD∩
6、平面PCB=l,所以l∥BC,所以l∥AD,故D正确.故选B.答案:B7.(2018届江淮名校期中)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD为菱形,M是PC上的一个动点,若要使得平面MBD⊥平面PCD.则应补充的一个条件可以是()A.MD⊥MBB.MD⊥PCC.AB⊥ADD.M是棱PC的中点解析:∵在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC,∴当DM⊥PC(或BM⊥PC)
7、时,即有PC⊥平面MBD,而PC平面PCD,∴平面MBD⊥平面PCD.答案:B8.(2017届宝鸡质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是()A.①②B.②③C.②④D.①④解析:①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD.④设A在平面BC
8、D内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.答案:D9.如图所示,在直四棱柱ABCD-ABCD中,当底面四边形ABCD满11111111足条件________时,有AC⊥BD(注:填上你认为正确的一种情况即可,不必111考虑所有可能的情况).解析:若AC⊥BD,由四棱柱ABCD-AB
此文档下载收益归作者所有