2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf

2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf

ID:57515700

大小:228.43 KB

页数:4页

时间:2020-08-26

2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf_第1页
2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf_第2页
2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf_第3页
2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf_第4页
资源描述:

《2019-2020学年高一数学人教B版必修4课时作业:1.2.3 同角三角函数的基本关系式 Word版含解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、课时作业05同角三角函数的基本关系式(限时:10分钟)π1.化简1-sin2的结果是()5ππA.sinB.-sin55ππC.cosD.-cos55ππππ解析:1-sin2=cos2=cos=cos.故选C.5555答案:C41+tanα2.若cosα=-,角α是第三象限角,则等于()51-tanα11A.-B.77C.7D.-731+331+tanα4解析:由已知,得sinα=-1-cos2α=-,故tanα=,所以==7.541-tanα31-4答案:Csinα-2cosα3.已知=-5,那么tanα的值为()3si

2、nα+5cosαA.-2B.22323C.D.-1616tanα-223解析:原式左边分子和分母同除以cosα,得=-5,解得tanα=-.3tanα+516答案:D14.已知cosA+sinA=,角A为第四象限角,则tanA等于()543A.B.3443C.-D.-3443sinA解析:由已知条件及sin2A+cos2A=1,可解得cosA=,sinA=-,故tanA==55cosA3-,选D.4答案:D5.已知θ∈(0,2π),且sinθ,cosθ是方程x2-kx+k+1=0的两个实根,求k,θ的值.解析:依题意有sinθ+co

3、sθ=k,①sinθcosθ=k+1,②又(sinθ+cosθ)2=1+2sinθcosθ,所以k2-2k-3=0,解得k=3或k=-1,显然

4、sinθcosθ

5、=

6、k+1

7、≤1,sinθ+cosθ=-1,因此k=-1,代入①②得sinθcosθ=0,sinθ=0,sinθ=-1,从而或cosθ=-1cosθ=0.3π又θ∈(0,2π),所以θ=π或.2(限时:30分钟)121.已知α是第四象限角,cosα=,则sinα等于()1355A.B.-131355C.D.-1212解析:∵α是第四象限角,1

8、25∴sinα=-1-cos2α=-1-2=-.1313答案:B12sinαcosα2.已知tanα=-,则的值是()2sin2α-cos2α4A.B.334C.-D.-332sinαcosα2tanα1解析:=,将tanα=-代入得:sin2α-cos2αtan2α-1212sinαcosα2×-24==,故选A.sin2α-cos2α13-14答案:A113.化简sinα+tanα(1-cosα)的结果是()A.sinαB.cosαC.1+sinαD.1+cosα1cosα1+cosα1-cosα

9、sin2α解析:原式=+(1-cosα)===sinα.sinαsinαsinαsinα答案:A15π4.已知sinαcosα=,且π<α<,则cosα-sinα的值为()8433A.B.-2233C.D.-44135π解析:∵(cosα-sinα)2=1-2sinαcosα=1-2×=,且π<α<,84433∴cosα<sinα,∴cosα-sinα<0,∴cosα-sinα=-=-.42答案:B515.已知sinα-cosα=-,则tanα+的值为()2tanαA.-4B.4C.-8D.81sinαcosαsin2α+co

10、s2α1解析:tanα+=+==.tanαcosαsinαsinαcosαsinαcosα55∵sinα-cosα=-,∴1-2sinαcosα=,2411∴sinαcosα=-,∴=-8.8sinαcosα答案:C1+sinx1cosx6.已知=-,则的值等于()cosx3sinx-111A.B.-33C.3D.-3cosx1+sinxsinx-1111解析:令=t,则·=-·=-,sinx-1cosxcosx3t3tsin2x-1111∴=-,∴=1,∴t=.cos2x3t3t3答案:A17.化简tanx+cos2x=__

11、______.tanxsinx解析:因为tanx=,cosxsinxcosxsin2x+cos2x1所以原式=+cos2x=·cos2x=.cosxsinxcosxsinxtanx1答案:tanx33π8.若cosα=-,且α∈π,,则tanα=________.523π4sinα解析:因为α∈π,,所以sinα<0,则sinα=-1-cos2α=-,所以tanα==25cosα4.34答案:3sin2θ+49.已知=2,那么(cosθ+3)(sinθ+1)的值为__________.cosθ+1sin2θ

12、+4解析:∵=2,∴sin2θ+4=2cosθ+2,cosθ+1∴cos2θ+2cosθ-3=0,解得cosθ=1或cosθ=-3(舍去).由cosθ=1,得sinθ=0,∴(cosθ+3)(sinθ+1)=4.答案:4m-34-2m

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。