资源描述:
《2019年高考数学(文科)二轮专题突破训练:专题六 直线、圆、圆锥曲线 专题能力训练17 Word版含答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题能力训练17 直线与圆锥曲线一、能力突破训练1.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )A.B.2C.2D.32.与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为( )A.4B.2C.2D.3.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若
2、AF
3、=3
4、BF
5、,则l的方程为( )A.y=x-1或y=-x+1B.y
6、=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1)D.y=(x-1)或y=-(x-1)4.在平面直角坐标系xOy中,双曲线C1:=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为 . 5.(2018全国Ⅱ,文20)设抛物线C:y2=4x的焦点为F,过点F且斜率为k(k>0)的直线l与C交于A,B两点,
7、AB
8、=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.6.已知椭圆C的两个顶点分别为A(-2,0),B(2
9、,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.7.在平面直角坐标系xOy中,过椭圆M:=1(a>b>0)右焦点的直线x+y-=0交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.8.已知椭圆C的中心在坐标原点,右焦点为F(1,0),A,B是椭圆C的左、右顶点,D是椭圆C上异于A
10、,B的动点,且△ADB面积的最大值为.(1)求椭圆C的方程.(2)是否存在一定点E(x0,0)(00).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:2
11、
12、=
13、
14、+
15、
16、.10.已知椭圆E:=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P在椭圆E
17、上.(1)求椭圆E的方程;(2)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:
18、MA
19、·
20、MB
21、=
22、MC
23、·
24、MD
25、.11.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.专题能力训练17 直线与圆锥曲线一、能力突破训练
26、1.C 解析由题意可知抛物线的焦点F(1,0),准线l的方程为x=-1,可得直线MF:y=(x-1),与抛物线y2=4x联立,消去y得3x2-10x+3=0,解得x1=,x2=3.因为M在x轴的上方,所以M(3,2).因为MN⊥l,且N在l上,所以N(-1,2).因为F(1,0),所以直线NF:y=-(x-1).所以M到直线NF的距离为=2.2.C 解析设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0.因为直线与抛物线相切,所以Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0
27、,从而A(-2,0),B(0,-2).因此过A,B两点的最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.3.C 解析由题意可得抛物线焦点F(1,0),准线方程为x=-1.当直线l的斜率大于0时,如图,过A,B两点分别向准线x=-1作垂线,垂足分别为M,N,则由抛物线定义可得,
28、AM
29、=
30、AF
31、,
32、BN
33、=
34、BF
35、.设
36、AM
37、=
38、AF
39、=3t(t>0),
40、BN
41、=
42、BF
43、=t,
44、BK
45、=x,而
46、GF
47、=2,在△AM
48、K中,由,得,解得x=2t,则cos∠NBK=,∴∠NBK=60°,则∠GFK=60°,即直线AB的倾斜角为60°.∴斜率k=tan60°=,故直线方程为y=(x-1).当直线l的斜率小于0时,如图,同理可得直线方程为y=-(x-1),故选C.4.