欢迎来到天天文库
浏览记录
ID:5744268
大小:127.50 KB
页数:8页
时间:2017-12-23
《简单的线性规划教案3》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、课题:7.4简单的线性规划(三)教学目的:1.能应用线性规划的方法解决一些简单的实际问题2.增强学生的应用意识.培养学生理论联系实际的观点教学重点:根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解教学难点:最优解是整数解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(
2、x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)2.目标函数,线性目标函数线性规划问题,可行解,可行域,最优解:诸如上述问题中,不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.t=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,我们把它称为目标函数.由于t=2x+y又是关于x、y
3、的一次解析式,所以又可叫做线性目标函数另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在问题中,可行域就是阴影部分表示的区域.其中可行解(一般是区域的顶点)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解3.用图解法解决简单的
4、线性规划问题的基本步骤:(1)根据线性约束条件画出可行域(即不等式组所表示的公共区域);(2)设t=0,画出直线;(3)观察、分析,平移直线,从而找到最优解;(4)最后求得目标函数的最大值及最小值二、讲解新课:1.第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大?例1某工厂生产甲、乙两种产品.已知生产甲种产品1t,需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品需耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元
5、.工厂在生产这两种产品的计划中要求消耗A种矿石不超过360t、B种矿石不超过200t、煤不超过300t,甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?分析:将已知数据列成下表:产品消耗量资源甲产品(1t)乙产品(1t)资源限额(t)A种矿石(t)104300B种矿石(t)54200煤(t)49360利润(元)6001000解:设生产甲、乙两种产品分别为xt、yt,利润总额为z元,那么目标函数为:z=600x+1000y.作出以上不等式组所表示的平面区域,即可行域.作直线:600x+1000y=0,即直
6、线l:3x+5y=0,把直线向右上方平移至1的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=600x+1000y取最大值.解方程组得M的坐标为x=≈12.4,y=≈34.4.答:应生产甲产品约12.4t,乙产品34.4t,能使利润总额达到最大2.第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小.例2要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型钢板类型A规格B规格C规格第一种钢板211第二种钢板123今需要A、B、C三种
7、规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?解:设需截第一种钢板x张,第二种钢板y张,根据题意可得:作出以上不等式组所表示的平面区域,即可行域:目标函数为z=x+y,作出在一组平行直线x+y=t(t为参数)中经过可行域内的点且和原点距离最近的直线,此直线经过直线x+3y=37和直线2x+y=15的交点A(),直线方程为x+y=由于都不是整数,而最优解(x,y)中,x、y必须满足x,y∈Z,所以,可行域内点()不是最优解经过可行域内的整点(横坐标和纵坐标都是整数的点)
8、且与原点距离最近的直线是x+y=12,经过的整点是B(3,9)和C(4,8),它们是最优解答:要截得所需规格的三种钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张,两种方法都最少要截得两种钢板共12张结合上述两例子总
此文档下载收益归作者所有