用户画像标签建模.docx

用户画像标签建模.docx

ID:57441616

大小:327.73 KB

页数:5页

时间:2020-08-17

用户画像标签建模.docx_第1页
用户画像标签建模.docx_第2页
用户画像标签建模.docx_第3页
用户画像标签建模.docx_第4页
用户画像标签建模.docx_第5页
资源描述:

《用户画像标签建模.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、用户画像标签建模用户相对稳定的信息,如图所示,主要包括人口属性、商业属性等方面数据。这类信息,自成标签,如果企业有真实信息则无需过多建模预测,更多的是数据清洗工作,因此这方面信息的数据建模不是本篇文章重点。动态信息数据目标分析用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。标签,表征了内容,用户对该内容有兴趣、偏好、需求等等。权重,表征了指数,用户的兴趣、偏好指数,也可能表征用户的需求度,可以简单的理解为可信度,概率。数据建模方法如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个

2、要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。什么用户:关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。什么时间:时间包括两个重要信息,时间戳+时间长度。时间戳,为了标识用户行为的时间点,如,(精度到秒),.(精度到微秒),通常采用精度到秒的时间戳即可。因为微秒的时间戳精度并不可靠。浏览器时间精度,准确度最多也只能到毫秒。时间长度,为了标识用户在某一页面的停留时间。什么地点:用户接触点,TouchPoint。对于每个用户接触点。潜在包含了两层信息:网址+内容。网址:每

3、一个url链接(页面/屏幕),即定位了一个互联网页面地址,或者某个产品的特定页面。可以是PC上某电商网站的页面url,也可以是手机上的微博,微信等应用某个功能页面,某款产品应用的特定画面。如,长城红酒单品页,微信订阅号页面,某游戏的过关页。内容:每个url网址(页面/屏幕)中的内容。可以是单品的相关信息:类别、品牌、描述、属性、网站信息等等。如,红酒,长城,干红,对于每个互联网接触点,其中网址决定了权重;内容决定了标签。注:接触点可以是网址,也可以是某个产品的特定功能界面。如,同样一瓶矿泉水,超市卖1元,火车上卖3元,景区卖5元。商品的

4、售卖价值,不在于成本,更在于售卖地点。标签均是矿泉水,但接触点的不同体现出了权重差异。这里的权重可以理解为用户对于矿泉水的需求程度不同。即,愿意支付的价值不同。标签权重矿泉水1//超市矿泉水3//火车矿泉水5//景区所以,网址本身表征了用户的标签偏好权重。网址对应的内容体现了标签信息。什么事:用户行为类型,对于电商有如下典型行为:浏览、添加购物车、搜索、评论、购买、点击赞、收藏等等。不同的行为类型,对于接触点的内容产生的标签信息,具有不同的权重。如,购买权重计为5,浏览计为1综合上述分析,用户画像的数据模型,可以概括为下面的公式:用户标

5、识+时间+行为类型+接触点(网址+内容),某用户因为在什么时间、地点、做了什么事。所以会打上**标签。用户标签的权重可能随时间的增加而衰减,因此定义时间为衰减因子r,行为类型、网址决定了权重,内容决定了标签,进一步转换为公式:标签权重=衰减因子×行为权重×网址子权重如:用户A,昨天在品尚红酒网浏览一瓶价值238元的长城干红葡萄酒信息。标签:红酒,长城时间:因为是昨天的行为,假设衰减因子为:r=0.95行为类型:浏览行为记为权重1地点:品尚红酒单品页的网址子权重记为0.9(相比京东红酒单品页的0.7)假设用户对红酒出于真的喜欢,才会去专业

6、的红酒网选购,而不再综合商城选购。则用户偏好标签是:红酒,权重是0.95*0.7*1=0.665,即,用户A:红酒0.665、长城0.665。上述模型权重值的选取只是举例参考,具体的权重值需要根据业务需求二次建模,这里强调的是如何从整体思考,去构建用户画像模型,进而能够逐步细化模型。总结:本文并未涉及具体算法,更多的是阐述了一种分析思想,在计划构建用户画像时,能够给您提供一个系统性、框架性的思维指导。核心在于对用户接触点的理解,接触点内容直接决定了标签信息。内容地址、行为类型、时间衰减,决定了权重模型是关键,权重值本身的二次建模则是水到

7、渠成的进阶。模型举例偏重电商,但其实,可以根据产品的不同,重新定义接触点。比如影视产品,我看了一部电影《英雄本色》,可能产生的标签是:周润发0.6、枪战0.5、港台0.3。最后,接触点本身并不一定有内容,也可以泛化理解为某种阈值,某个行为超过多少次,达到多长时间等。比如游戏产品,典型接触点可能会是,关键任务,关键指数(分数)等等。如,积分超过1万分,则标记为钻石级用户。钻石用户1.0。百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏

8、点击率提升27%,订单转化率提升34%。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。