【数据分析技术系列】之用户画像数据建模方法.pdf

【数据分析技术系列】之用户画像数据建模方法.pdf

ID:52454432

大小:368.37 KB

页数:7页

时间:2020-03-27

【数据分析技术系列】之用户画像数据建模方法.pdf_第1页
【数据分析技术系列】之用户画像数据建模方法.pdf_第2页
【数据分析技术系列】之用户画像数据建模方法.pdf_第3页
【数据分析技术系列】之用户画像数据建模方法.pdf_第4页
【数据分析技术系列】之用户画像数据建模方法.pdf_第5页
资源描述:

《【数据分析技术系列】之用户画像数据建模方法.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、【数据分析技术系列】之用户画像数据建模方法目录一、什么是用户画像?............................................................................1二、为什么需要用户画像........................................................................1三、如何构建用户画像............................................................................23.1数据源分析.....

2、......................................................................................2静态信息数据..........................................................................................3动态信息数据..........................................................................................33.2目标分析......

3、..........................................................................................33.3数据建模方法......................................................................................4四、总结:..................................................................................................6从19

4、91年TimBerners-Lee发明了万维网(WorldWideWeb)开始到2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。伴随着大数据应用的讨论、创新,个性化技术成为了一个重要落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。伴随着对人的了解逐步深入,一个概念悄然而生:用户画像

5、(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。一、什么是用户画像?男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。如果用一幅图来展现,即:二、为什么需要用户画像用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜1欢红酒的人群中,男、女比例是多少?也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况

6、?大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解”人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。三、如何构建用户画像一个标签通常是人为规定的高度精炼的特征标识,如年龄段标签:25~35岁,地域标签:北京,标签呈现出两个重要特征:语义化,人能很方便地理解每个标签含义。这也使得用户画像模型具备实际意义。能够较好的满足业务需求。如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机

7、器提取标准化信息提供了便利。人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。3.1数据源分析构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。