欢迎来到天天文库
浏览记录
ID:57438151
大小:24.85 KB
页数:9页
时间:2020-08-16
《初一下册数学知识点总结归纳苏教版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、两条直线相交有4对邻补角。 有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 512 两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。 其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 注意⑴垂线是一条直线。 ⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法⊥,⊥。 画已知直线的垂线有无数条。 过一点有且只有一条直线与已知直线垂直。 连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成垂线段最短。 直线
2、外一点到这条直线的垂线段的长度,叫做点到直线的距离。 在同一平面内,两条直线没有交点,则这两条直线互相平行,记作∥。 在同一平面内两条直线的关系只有两种相交或平行。 平行公理经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 522直线平行的条件 两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。 两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。 两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同
3、旁内角。 判定两条直线平行的方法 方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单说成同位角相等,两直线平行。 方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 简单说成内错角相等,两直线平行。 方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 简单说成同旁内角互补,两直线平行。 53平行线的性质 平行线具有性质 性质1两条平行线被第三条直线所截,同位角相等。 简单说成两直线平行,同位角相等。 性质2两条平行线被第三条直线所截,内错角相等。 简单说成两直线平行,内错角相
4、等。 性质3两条平行线被第三条直线所截,同旁内角互补。 简单说成两直线平行,同旁内角互补。 同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。 判断一件事情的语句叫做命题。 54平移 ⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各 组对应点的线段平行且相等。 图形的这种移动,叫做平移变换,简称平移。 第六章《平面直角坐标系》 61平面直角坐标系611有序数对 有顺序的两个数与组成的数对
5、,叫做有序数对。 612平面直角坐标系 平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为轴或横轴,习惯上取向右为正方向;竖直的数轴称为轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。 平面上的任意一点都可以用一个有序数对来表示。 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。 坐标轴上的点不属于任何象限。 62坐标方法的简单应用621用坐标表示地理位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下⑴建立坐标
6、系,选择一个适当的参照点为原点,确定轴、轴的正方向;⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 622用坐标表示平移 在平面直角坐标系中,将点,向右或左平移个单位长度,可以得到对应点+,或-,;将点,向上或下平移个单位长度,可以得到对应点,+或,-。 在平面直角坐标系内,如果把一个图形各个点的横坐标都加或减去一个正数,相应的新图形就是把原图形向右或向左平移个单位长度;如果把它各个点的纵坐标都加或减去一个正数,相应的新图形就是把原图形向上或向下平移个单位长度。 第七章《三角形》 71
7、与三角形有关的线段711三角形的边 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 相邻两边组成的角,叫做三角形的内角,简称三角形的角。 顶点是、、的三角形,记作△,读作三角形。 三角形两边的和大于第三边。 712三角形的高、中线和角平分线713三角形的稳定性 三角形具有稳定性。 72与三角形有关的角721三角形的内角 三角形的内角和等于180。 722三角形的外角 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。 三角形的一个外角等于与它不相邻的两个内角的和。 三角形的一个外角大于与它不相邻的任何一个内角。
8、73多边形及其内角和73
此文档下载收益归作者所有