1、专题完全平方公式、平方差公式的几何背景【例7】(2012•遵义)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( C )A.2cm2B2acm2C.4acm2D.(a2-1)cm2分析:先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积-矩形的面积即可得出答案.解答:解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.【
3、故选C.【变式训练】15.(2012四川绵阳)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( C )A.2mnB.(m+n)2C.(m-n)2D.m2-n216.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为( C )A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b
4、)(a-b)D.a2+ab=a(a+b)17.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( B )A.(m+n)2-(m-n)2=4mnB.(m+n)2-(m2+n2)=2mnC.(m-n)2+2mn=m2+n2D.(m+n)(m-n)=m2-n218.(2012广东佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.2m+419.如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,