分组密码攻击模型的构建和自动化密码分析.doc

分组密码攻击模型的构建和自动化密码分析.doc

ID:57316570

大小:19.00 KB

页数:6页

时间:2020-08-11

分组密码攻击模型的构建和自动化密码分析.doc_第1页
分组密码攻击模型的构建和自动化密码分析.doc_第2页
分组密码攻击模型的构建和自动化密码分析.doc_第3页
分组密码攻击模型的构建和自动化密码分析.doc_第4页
分组密码攻击模型的构建和自动化密码分析.doc_第5页
资源描述:

《分组密码攻击模型的构建和自动化密码分析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、分组密码攻击模型的构建和自动化密码分析随着物联网时代向万物互联时代的不断推动,互联网为生活方方面面带来便利的同时,网络安全问题也在新形势下面临新的挑战。作为保障网络安全的基石,密码在安全认证、加密保护和信息传递等方面发挥了十分重要的作用。与公钥密码体制相比,对称密码算法由于效率高、算法简单、适合加密大量数据的优点应用更为广泛。基于这一事实,对分组密码算法分析与设计的研究在新环境下显得尤为重要。本文围绕分组密码攻击模型的构建和自动化密码分析这一主题展开。首先,在攻击模型构建方面,我们提出了卡方多重/多维零相关线性分析模型,并

2、将该模型用于一系列算法的多重和多维零相关分析中。其次,针对自动化密码分析,我们一方面着眼于攻击路线的自动化搜索问题,另一方面试图借助自动化思想解决密码学中的理论问题。在路线自动化搜索方面,我们给出了基于MILP方法对具有复杂线性层的算法和ARX类算法搜索比特级分离特性的模型,使用新方法对一系列算法关于积分分析的抵抗性进行了评估。构建了基于SAT方法ARX类算法比特级分离特性的自动化搜索工具和基于SMT方法自动化搜索字级分离特性的新工具,完善了分离特性自动化搜索框架。在自动化解决理论问题方面,讨论了差分分析中的差分聚集现象,

3、对两个算法给出了更加精确的差分分析。最后,我们对SIMON算法的所有版本给出了零相关攻击结果。具体结果如下。给出了基于SAT方法自动化搜索并分析带S盒算法差分闭包的工具:为了填补SAT方法在搜索差分闭包方面的空白,我们给出了基于SAT问题的差分闭包自动化搜索工具。首先,我们给出对线性层和由多个小S盒构成的非线性层的刻画。随后,给出了目标函数的SAT模型,这使得我们可以实现在固定权重下差分特征的搜索。最后,给出了搜索差分闭包中多条路线的方法。这一自动化搜索方法在对LED64算法和Midori64算法的分析中发挥了十分重要的作

4、用。对于LED64算法,我们提出了一种自动化搜索差分闭包正确对的方法。首先,我们导出满足差分路线正确对的约束条件,而后,将这些约束条件转化为SAT问题,保证SAT问题的解与路线的所有正确对一一对应。然后,使用求解器的多解搜索模式,搜索服从差分路线的所有正确对。基于这一方法,我们改进了Mendel等人[86]给出的迭代和非迭代差分闭包概率的结果。基于这些针对差分闭包改进的结果,已有的对于LED64算法缩短轮的攻击都得到了不同程度的改进。对于Midori64算法,我们构建了一种自动化评估差分闭包弱密钥空间的模型。首先,我们导出

5、一个密钥作为弱密钥所满足的必要条件,而后针对这些条件构建SAT模型,并调用求解器求解。基于这一方法,我们给出了Midori64算法两个4轮差分闭包的实例,对这两个差分闭包,超过78%的密钥将使其变为不可能差分,换言之,它们的弱密钥比例非常低。如果该路线用于差分攻击,那么很可能错误的将正确密钥当作错误密钥,这就使得差分分析理论结果与实际情况产生偏差。与这一现象相对应,我们考虑差分闭包确定的那些“极弱的”密钥,在这些密钥下,差分攻击的成功率将大于理论结果。该问题与讨论差分闭包中同时成立的路线数量相关,我们发现这类问题可以转化为

6、一类特殊的Max-PoSSo问题。对此,我们构建SAT模型以确定差分闭包中可兼容路线的最大数量。最后,我们给出了Midori64算法一条差分闭包的实例,对于2-12的密钥,差分闭包的概率由期望值2-23.79提升到2-16。这一现象表明,在这些“极弱”密钥下,差分攻击将更有可能成功,或者说,我们可以以更低的代价实现差分攻击。这些例子提醒我们,对于密钥生成算法简单的轻量级算法,在进行差分分析时,需要格外注意区分器本身的有效性。构建卡方多重/多维零相关线性分析新模型,用该模型给出了TEA算法单密钥情境下的最优攻击:作为更加成熟

7、的密码分析方法,多重和多维零相关线性分析克服了经典零相关攻击在数据复杂度方面的缺陷,使得零相关分析方法被广泛应用于系列对称密码攻击的同时,成为了很多算法的最优攻击方法。虽然多重和多维零相关模型在对众多密码算法的分析中显示出了优越性,但这两个模型对于零相关路线数量的限制条件仍然存在。为了消除这一约束条件,我们构建了卡方多重/多维零相关线性分析模型。由于在模型构建过程中取消了卡方分布的正态逼近过程,新模型在复杂度评估方面达到更高精度的同时,有效性不再依赖路线数量的假设。卡方模型的提出在零相关分析领域具有十分重要的意义:一方面,

8、新模型拓宽了零相关模型的应用范围,具有普适性;另一方面,新的卡方多重模型允许我们在单路线环境下使用低于整个明文空间的数据量对密码算法进行分析,克服了传统零相关分析在这一方面的不足。我们将卡方多维攻击模型应用于CLEFIA-192算法的分析,在对已有攻击复杂度给出更精确评估的同时,使用更少的零相关路线对算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。